Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and optimization of all-fiber rotational Raman spectroscope for temperature measurement based on sampled fiber Bragg grating

Gong Xin Hua Deng-Xin Li Shi-Chun Wang Jun Shi Xiao-Jing

Citation:

Design and optimization of all-fiber rotational Raman spectroscope for temperature measurement based on sampled fiber Bragg grating

Gong Xin, Hua Deng-Xin, Li Shi-Chun, Wang Jun, Shi Xiao-Jing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Atmospheric temperature is a key parameter to characterize the state of the atmosphere. Owing to the independence of the aerosol effect for profiling the temperture, the pure rotational Raman lidar has become one of valid tools. To achieve all-time and high-precision active remote sensing, strong background noise needs to be filtered out, and the inhibition rate outside the band of more than 70 dB is needed for Mie-Rayleigh scattering in a rotational Raman temperature measurement lidar. In this paper, a multiple cascaded light path based on sampled fiber Bragg grating (SFBG) and fiber Bragg grating (FBG) in visible spectrum is presented to obtain characteristic spectrum. All-fiber spectroscopic system with high inhibition rate for Raman thermometry is set up based on the above light path. The core device consists of single mode fibers (460-HP) to ensure the compatibility with optical fiber. The main factors affecting the inhibition rate outside the band of sampled fiber Bragg grating, including refractive index modulation depth, total length of grating, sampling period and duty, are optimally designed by using mode coupling theory and tranmission matrix model. Then the optimized parameters of spectroscope are obtained. The results show that the inhibition rate outside the band is proportional to the refractive index modulation depth and duty, when the total length of grating is a constant. However, a larger sidelobe jamming will be caused by overlarge refractive index modulation depth. The less amount and widened full width half maximun of reflectivity peak appear following overlarge duty. In the Raman spectroscopic system of this paper, the inhibition rates outside the bands of SFBG and FBG are 30 dB and 20 dB, respectively. The inhibition rate of more than 70 dB is realized for Mie-Rayleigh scattering, after passing through two FBGs and one SFBG. The simulated optimum parameters of SFBGs are the effective index of the guide mode of 1.465, the saturation index variation of 0.00005, the SFBG length of 20 mm, the sampled period of 0.4 mm, and the Bragg wavelengths of 528.51 nm and 530.76 nm. By using the American standard model and atmospheric scattering signal model, the all-time signal-to-noise ratio (SNR) and inhibition rate of Mie-Rayleigh scattering and solar background light are simulated and analyzed. The results show that the intensities of solar background light and Mie-Rayleigh scattering signal are weaker than Raman scattering signals at 40 dB and 50 dB, respectively. The detection height in daytime and night can reach up to 1.6 km and 2.6 km under the condition of SNR of more than 100, respectively. Owing to these advantages such as miniaturization, anti-interference and high stability, this spectroscope provides a viable solution for filter systems of ground-based and spaceborne lidars.
      Corresponding author: Hua Deng-Xin, dengxinhua@xaut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61275185, 61308106), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2013JM5001), and the Scientific Research Plan Projects of Shaanxi Education Department, China (Grant No. 15JK1529).
    [1]

    Girolamo P D, Behrendt A, Wulfmeyer V 2006 Appl. Opt. 45 2474

    [2]

    Liu Y, Wang L S, Tao P L, Feng S C, Yin G L, Ren W H, Tan Z W, Jian S S 2011 Acta Phys. Sin. 60 024207 (in Chinese) [刘艳, 汪磊石, 陶沛琳, 冯素春, 尹国路, 任文华, 谭中伟, 简水生 2011 物理学报 60 024207]

    [3]

    Tang B H, Wang N, Qian Y G 2012 Geosciences and Remote Sensing Symposium Munich, Germany, July 22-27, 2012 pp2482-2485

    [4]

    Li S C, Hua D X, Wang L, Song Y H 2013 Optik 124 1450

    [5]

    Cooney J 1972 J. Appl. Meteorol. 11 108

    [6]

    Li Y J, Song S L, Li F Q, Cheng X W, Chen Z W, Liu L M, Yang Y, Gong S S 2015 Chinese J. Geophys. 58 2294 (in Chinese) [李亚娟, 宋沙磊, 李发泉, 程学武, 陈振威, 刘林美, 杨勇, 龚顺生 2015 地球物理学报 58 2294]

    [7]

    Zhang Y C, Chen W, Sun S L, Meng Z 2015 Chin. Phys. B 24 094209

    [8]

    Wang Y F, Gao F, Zhu C X, He T Y, Hua D X 2015 Acta Opt. Sin. 35 03280004 (in Chinese) [王玉峰, 高飞, 朱承炫, 何廷尧, 华灯鑫 2015 光学学报 35 03280004]

    [9]

    Andreas B, Takuji N, Michitaka O, Rudolf B, Toshitaka T 2002 Appl. Opt. 36 7657

    [10]

    Wang H W, Hua D X, Wang Y F, Gao P, Zhao H 2013 Acta Phys. Sin. 62 120701 (in Chinese) [王红伟, 华灯鑫, 王玉峰, 高朋, 赵虎 2013 物理学报 62 120701]

    [11]

    Borovoi A, Konoshonkin A, Kustova N, Okamoto H 2012 Opt. Express 20 28222

    [12]

    Ren X Y, Tian Z S, Sun L J, Fu S Y 2014 Acta Phys. Sin. 63 164209 (in Chinese) [任秀云, 田兆硕, 孙兰君, 付石友 2014 物理学报 63 164209]

    [13]

    Wang X, Huang J P, Zhang R D, Chen B, Bi J R 2010 J. Geophys. Res. 115 1

    [14]

    Ma C J, Ren L Y, Qu E S 2012 Opt. Commun. 285 4949

    [15]

    Mi Q S, Zhu H N, Gao X R, Li J L 2015 Optik 126 432

    [16]

    Chen S, Qiu Z, Zhang Y, Chen H, Wang Y 2011 J. Quant. Spectrosc. Radiat. 112 304

    [17]

    Mihailov S J 2012 Sensors-Basel 12 1898

    [18]

    Jia B H, Sheng Q Q, Feng D Q, Dong X Y 2003 Chin. J. Lasers 20 247 (in Chinese) [贾宝华, 盛秋琴, 冯丹琴, 董孝义 2003 中国激光 20 247]

    [19]

    Zhang Z J, Wang C M 2007 Laser Infrared 37 552 (in Chinese) [张自嘉, 王昌明 2007 激光与红外 37 552]

    [20]

    Zhu H N, Luo B, Pan W 2012 J. Opt. Soc. Am. B 29 1497

    [21]

    Wu H, Yan H, Li X 2010 Optik 121 1789

    [22]

    Wen K, Yan L, Pan W 2011 Optik 122 2249

    [23]

    Dukhyeon K, Hyungki C 2005 Opt. Lett. 30 1728

    [24]

    Behrendt A, Reichardt J 2000 Appl. Opt. 39 1372

    [25]

    Li S C, Hua D X, Hu L L, Yan Q, Tian X Y 2014 Spectrosc. Lett. 47 244

    [26]

    Li S C, Hua D X, Wang Y F, Gao F, Yan Q, Shi X J 2015 J. Quant. Spectrosc. Radiat. 153 113

    [27]

    Mao J D, Hua D X, Hu L L, Wang Y F, Wang L 2010 Acta Opt. Sin. 30 7 (in Chinese) [毛建东, 华灯鑫, 胡辽林, 王玉峰, 汪丽 2010 光学学报 30 7]

  • [1]

    Girolamo P D, Behrendt A, Wulfmeyer V 2006 Appl. Opt. 45 2474

    [2]

    Liu Y, Wang L S, Tao P L, Feng S C, Yin G L, Ren W H, Tan Z W, Jian S S 2011 Acta Phys. Sin. 60 024207 (in Chinese) [刘艳, 汪磊石, 陶沛琳, 冯素春, 尹国路, 任文华, 谭中伟, 简水生 2011 物理学报 60 024207]

    [3]

    Tang B H, Wang N, Qian Y G 2012 Geosciences and Remote Sensing Symposium Munich, Germany, July 22-27, 2012 pp2482-2485

    [4]

    Li S C, Hua D X, Wang L, Song Y H 2013 Optik 124 1450

    [5]

    Cooney J 1972 J. Appl. Meteorol. 11 108

    [6]

    Li Y J, Song S L, Li F Q, Cheng X W, Chen Z W, Liu L M, Yang Y, Gong S S 2015 Chinese J. Geophys. 58 2294 (in Chinese) [李亚娟, 宋沙磊, 李发泉, 程学武, 陈振威, 刘林美, 杨勇, 龚顺生 2015 地球物理学报 58 2294]

    [7]

    Zhang Y C, Chen W, Sun S L, Meng Z 2015 Chin. Phys. B 24 094209

    [8]

    Wang Y F, Gao F, Zhu C X, He T Y, Hua D X 2015 Acta Opt. Sin. 35 03280004 (in Chinese) [王玉峰, 高飞, 朱承炫, 何廷尧, 华灯鑫 2015 光学学报 35 03280004]

    [9]

    Andreas B, Takuji N, Michitaka O, Rudolf B, Toshitaka T 2002 Appl. Opt. 36 7657

    [10]

    Wang H W, Hua D X, Wang Y F, Gao P, Zhao H 2013 Acta Phys. Sin. 62 120701 (in Chinese) [王红伟, 华灯鑫, 王玉峰, 高朋, 赵虎 2013 物理学报 62 120701]

    [11]

    Borovoi A, Konoshonkin A, Kustova N, Okamoto H 2012 Opt. Express 20 28222

    [12]

    Ren X Y, Tian Z S, Sun L J, Fu S Y 2014 Acta Phys. Sin. 63 164209 (in Chinese) [任秀云, 田兆硕, 孙兰君, 付石友 2014 物理学报 63 164209]

    [13]

    Wang X, Huang J P, Zhang R D, Chen B, Bi J R 2010 J. Geophys. Res. 115 1

    [14]

    Ma C J, Ren L Y, Qu E S 2012 Opt. Commun. 285 4949

    [15]

    Mi Q S, Zhu H N, Gao X R, Li J L 2015 Optik 126 432

    [16]

    Chen S, Qiu Z, Zhang Y, Chen H, Wang Y 2011 J. Quant. Spectrosc. Radiat. 112 304

    [17]

    Mihailov S J 2012 Sensors-Basel 12 1898

    [18]

    Jia B H, Sheng Q Q, Feng D Q, Dong X Y 2003 Chin. J. Lasers 20 247 (in Chinese) [贾宝华, 盛秋琴, 冯丹琴, 董孝义 2003 中国激光 20 247]

    [19]

    Zhang Z J, Wang C M 2007 Laser Infrared 37 552 (in Chinese) [张自嘉, 王昌明 2007 激光与红外 37 552]

    [20]

    Zhu H N, Luo B, Pan W 2012 J. Opt. Soc. Am. B 29 1497

    [21]

    Wu H, Yan H, Li X 2010 Optik 121 1789

    [22]

    Wen K, Yan L, Pan W 2011 Optik 122 2249

    [23]

    Dukhyeon K, Hyungki C 2005 Opt. Lett. 30 1728

    [24]

    Behrendt A, Reichardt J 2000 Appl. Opt. 39 1372

    [25]

    Li S C, Hua D X, Hu L L, Yan Q, Tian X Y 2014 Spectrosc. Lett. 47 244

    [26]

    Li S C, Hua D X, Wang Y F, Gao F, Yan Q, Shi X J 2015 J. Quant. Spectrosc. Radiat. 153 113

    [27]

    Mao J D, Hua D X, Hu L L, Wang Y F, Wang L 2010 Acta Opt. Sin. 30 7 (in Chinese) [毛建东, 华灯鑫, 胡辽林, 王玉峰, 汪丽 2010 光学学报 30 7]

  • [1] Li Jian-Yu, Dong Zhong-Ji, Zhang Ji-Hong, Shi Wen-Hui, Zheng Jia-Jin, Wei Wei. Temperature-independent multi-parameter sensor based on polarization maintaining fiber Bragg grating. Acta Physica Sinica, 2023, 72(14): 144206. doi: 10.7498/aps.72.20230478
    [2] Sun Miao, Yang Shuang, Tang Yu-Quan, Zhao Xiao-Hu, Zhang Zhi-Rong, Zhuang Fei-Yu. Distributed fiber optic temperature sensor based on dynamic calibration of Raman Stokes backscattering light intensity. Acta Physica Sinica, 2022, 71(20): 200701. doi: 10.7498/aps.71.20220611
    [3] Wang Hao, Cao Shan-Shan, Su Jun-Hao, Xu Hai-Tao, Wang Zhen, Zheng Jia-Jin, Wei Wei. Temperature field monitoring of lithium battery pack based on double-clad fiber Bragg grating sensor. Acta Physica Sinica, 2022, 71(10): 104207. doi: 10.7498/aps.71.20212302
    [4] Li Qi-Meng, Li Shi-Chun, Qin Yu-Li, Hu Xiang-Long, Zhao Jing, Song Yue-Hui, Hua Deng-Xin. Design and performance of spectroscopic filter of rotational Raman temperature lidar for absolute measurement. Acta Physica Sinica, 2018, 67(1): 014207. doi: 10.7498/aps.67.20171834
    [5] Wang Yu-Feng, Zhang Jing, Tang Liu, Wang Qing, Gao Tian-Le, Song Yue-Hui, Di Hui-Ge, Li Bo, Hua Deng-Xin. Design and simulation analysis of spectroscopic system for synchronous atmospheric three-phase water detection based on Raman lidar. Acta Physica Sinica, 2018, 67(22): 224205. doi: 10.7498/aps.67.20180644
    [6] Zhou Tai-Dou, Liang Xiao-Bao, Li Chao, Huang Zhi-Hua, Feng Jian-Sheng, Zhao Lei, Wang Jian-Jun, Jing Feng. 2.5 kW average power, two-channel spectral-beam-combined output based on transmitting volume Bragg grating. Acta Physica Sinica, 2017, 66(8): 084204. doi: 10.7498/aps.66.084204
    [7] Qi Jun-Feng, Zhong Zhu-Qiang, Wang Guang-Na, Xia Guang-Qiong, Wu Zheng-Mao. Characteristics of chaotic output from a Gaussian apodized fiber Bragg grating external-cavity semiconductor laser. Acta Physica Sinica, 2017, 66(24): 244207. doi: 10.7498/aps.66.244207
    [8] Wang Jun, Cui Meng, Lu Hong, Wang Li, Yan Qing, Liu Jing-Jing, Hua Deng-Xin. Investigation of the absolute detection method of atmospheric temperature based on solid cavity scanning Fabry-Perot interferometer. Acta Physica Sinica, 2017, 66(8): 089202. doi: 10.7498/aps.66.089202
    [9] Li Shi-Chun, Wang Da-Long, Li Qi-Meng, Song Yue-Hui, Liu Li-Juan, Hua Deng-Xin. Pure rotational Raman lidar for absolute detection of atmospheric temperature. Acta Physica Sinica, 2016, 65(14): 143301. doi: 10.7498/aps.65.143301
    [10] Qing Hai-Yin, Zhang Yuan-Nong, Zhou Chen, Zhao Zheng-Yu, Chen Gang. Atmospheric temperature profiles estimated by the vertical wind speed observed by MST radar. Acta Physica Sinica, 2014, 63(9): 094301. doi: 10.7498/aps.63.094301
    [11] Wang Hong-Wei, Hua Deng-Xin, Wang Yu-Feng, Gao Peng, Zhao Hu. Design and analysis of new spectroscopic system of Raman lidar for detection of atmospheric water vapor. Acta Physica Sinica, 2013, 62(12): 120701. doi: 10.7498/aps.62.120701
    [12] Xu Jiang-Ming, Leng Jin-Yong, Han Kai, Zhou Pu, Hou Jing. Experimental research on single-frequency fiber Raman amplifier. Acta Physica Sinica, 2012, 61(7): 074204. doi: 10.7498/aps.61.074204
    [13] Ma Jing, Che Chi, Yu Si-Yuan, Tan Li-Ying, Zhou Yan-Ping, Wang Jian. -radiation damage of fiber Bragg grating and its effects on reflected spectrum characteristics. Acta Physica Sinica, 2012, 61(6): 064201. doi: 10.7498/aps.61.064201
    [14] Rao Yun-Jiang, Li Li, Jia Xin-Hong, Ran Zeng-Ling, Zhang Tian-Hu. Long-distance optical fiber transmission system based on hybrid Raman amplification. Acta Physica Sinica, 2010, 59(7): 4682-4686. doi: 10.7498/aps.59.4682
    [15] Han Ru, Fan Xiao-Ya, Yang Yin-Tang. Temperature-dependent Raman property of n-type SiC. Acta Physica Sinica, 2010, 59(6): 4261-4266. doi: 10.7498/aps.59.4261
    [16] Wang Wei-Ning. Terahertz and Raman spectra of L-threonine. Acta Physica Sinica, 2009, 58(11): 7640-7645. doi: 10.7498/aps.58.7640
    [17] Wang Min, Hu Shun-Xing, Fang Xin, Wang Shao-Lin, Cao Kai-Fa, Zhao Pei-Tao, Fan Guang-Qiang, Wang Ying-Jian. Precise correction for the troposphere target location error based on lidar. Acta Physica Sinica, 2009, 58(7): 5091-5097. doi: 10.7498/aps.58.5091
    [18] Wang Shao-Lin, Su Jia, Zhao Pei-Tao, Cao Kai-Fa, Hu Shun-Xing, Wei He-Li, Tan Kun, Hu Huan-Ling. A pure rotational Raman-lidar based on three-stage Fabry-Perot etalons for monitoring atmospheric temperature. Acta Physica Sinica, 2008, 57(6): 3941-3947. doi: 10.7498/aps.57.3941
    [19] Xu Cun-Ying, Zhang Peng-Xiang, Yan Lei. Blue shift of Raman peaks of coated BaTiO3 nanoparticles. Acta Physica Sinica, 2005, 54(11): 5089-5092. doi: 10.7498/aps.54.5089
    [20] Bai Ying, Lan Yan-Na, Mo Yu-Jun. Temperature measurement from the Raman spectra of porous silicon. Acta Physica Sinica, 2005, 54(10): 4654-4658. doi: 10.7498/aps.54.4654
Metrics
  • Abstract views:  5154
  • PDF Downloads:  171
  • Cited By: 0
Publishing process
  • Received Date:  16 October 2015
  • Accepted Date:  20 January 2016
  • Published Online:  05 April 2016

/

返回文章
返回