Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Utra-thin single-layered high-efficiency focusing metasurface lens

Guo Wen-Long Wang Guang-Ming Li Hai-Peng Hou Hai-Sheng

Citation:

Utra-thin single-layered high-efficiency focusing metasurface lens

Guo Wen-Long, Wang Guang-Ming, Li Hai-Peng, Hou Hai-Sheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • For potential applications of metasurfaces in lens technologies, we propose a cross circularly polarized focusing metasurface which is capable of transforming a circularly polarized wave into cross-polarized wave and simultaneously focusing electromagnetic wave. A helicity-dependent phase change is introduced into the transmission metasurface cell, which is a single layer with a thickness of 1.5 mm and can be engineered by assembling along the spatial orientation of each Pancharatnam-Berry phase element. The phase change of the Pancharatnam-Berry phase element is analyzed theoretically, and the efficiency of the designed element is simulated under the irradiation of differently polarized waves. A phase gradient metasurface with a phase difference of 60 between neighbouring cells is designed. When simulated in CST Microwave Studio, the gradient metasurface is observed to have a ability to refract right-hand circularly polarized waves in +x direction and left-hand circularly polarized waves in -x direction but with an identical refraction angle of 33.8, which is in good accordance with the angle calculated from the general refraction law. Then we design a focusing metasurface with a size of 90 mm90 mm and 1515 cells. When the focusing metasurface lens is irradiated by left-hand circularly polarized wave, the refracted right-hand circularly polarized wave is focused at a point 40 mm away from the lens center. However, when the metasurface lens is impinged by the right-hand circularly polarized wave, the refracted left-hand circularly polarized wave is diffracted. This ultimately accords with different phase responses under different polarized waves when the metasurface cell is rotated. Furthermore, the metasurface lens diffracts the incident wave when impinged by right-hand circularly polarized wave, which validates the design principle. The beam-width at the focal spot and the focal depth are also calculated. The simulation results indicate that the beam-width at the focal spot is approximately equal to three quarters of the operating wavelength. Therefore, the circularly polarized wave refraction focusing metasurface has a good performance for focusing the refracted waves. In addition, the proposed focusing metasurface is simulated separately at f=14 GHz and f=16 GHz, and the results show a good focusing effect, which demonstrates the bandwidth characteristic of the focusing metasurface lens. This designed metasurface lens is thin, single-layered, and highly effective, and it is also convenient to fabricate. Moreover, the metasurface lens has an advantage over the conventional lens, which has potential applications in manipulating electromagnetic waves and improves the performance of lens.
      Corresponding author: Wang Guang-Ming, wgming01@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61372034, 61501499).
    [1]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [2]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Pang Y Q, Xu Z, Zhang A X 2015 J. Appl. Phys. 117 044501

    [3]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Zhou H, Xu Z, Zhang A X 2015 Chin. Phys. B 24 014202

    [4]

    Shi H Y, Li J X, Zhang A X, Wang J F, Xu Z 2014 Chin. Phys. B 23 118101

    [5]

    Zhang K, Ding X M, Zhang L, Wu Q 2014 New J. Phys. 16 103020

    [6]

    Sun Y Y, Han L, Shi X Y, Wang Z N, Liu D H 2013 Acta Phys. Sin. 62 104201 (in Chinese) [孙彦彦, 韩璐, 史晓玉, 王兆娜, 刘大禾 2013 物理学报 62 104201]

    [7]

    Kang M, Feng T H, Wang H T, Li J S 2012 Opt. Express 20 15882

    [8]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304

    [9]

    Pors A, Nielsen M G, Eriksen R L, Bozhevolnyi S I 2013 Nano Lett. 13 829

    [10]

    Wei Z Y, Cao Y, Su X P, Gong Z J, Long Y, Li H Q 2013 Opt. Express 21 010739

    [11]

    Cheng J R, Mosallaei H 2014 Opt. Lett. 39 2719

    [12]

    Pfeiffer C, Grbic A 2013 Appl. Phys. Lett. 102 231116

    [13]

    Qu S W, Wu W W, Chen B J, Yi H, Bai X, Ng K B, Chan C H 2015 Sci. Rep. 5 963

    [14]

    Pu M B, Chen P, Wang C T, Wang Y Q, Zhao Z Y, Hu C G, Huang C, Luo X G 2013 Aip Adv. 3 052136

    [15]

    Aieta F, Genevet P, Kats M A, Yu N F, Blanchard R Gaburro Z, Capasso F 2012 Nano Lett. 12 4932

    [16]

    Sun S L, Yang K Y, Wang C M, Juan T K, Chen T K, Liao C Y, He Q, Xiao S Y, Kung W T, Guo G Y, Zhou L, Tsai D P 2012 Nano Lett. 12 6223

    [17]

    Yang Q L, Gu J Q, Wang D Y, Zhang X Q, Tian Z, Ouyang C M, Ranjan S, Han J G, Zhang W L 2014 Opt. Express 22 25931

    [18]

    Saeidi C, Weide D V D 2015 Appl. Phys. Lett. 106 113110

    [19]

    Wang J F, Qu S B, Ma H, Xu Z, Zhang A X, Zhou H, Chen H Y, Li Y F 2012 Appl. Phys. Lett. 101 201104

    [20]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Acta Phys. Sin. 63 084103 (in Chinese) [李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学 2014 物理学报 63 084103]

    [21]

    Xu J J, Zhang H C, Zhang Q, Cui T J 2015 Appl. Phys. Lett. 106 021102

    [22]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light-Sci. Appl. 3 e218

    [23]

    Hasman E, Kleiner V, Biener G, Niv A 2003 Appl. Phys. Lett. 82 328

  • [1]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [2]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Pang Y Q, Xu Z, Zhang A X 2015 J. Appl. Phys. 117 044501

    [3]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Zhou H, Xu Z, Zhang A X 2015 Chin. Phys. B 24 014202

    [4]

    Shi H Y, Li J X, Zhang A X, Wang J F, Xu Z 2014 Chin. Phys. B 23 118101

    [5]

    Zhang K, Ding X M, Zhang L, Wu Q 2014 New J. Phys. 16 103020

    [6]

    Sun Y Y, Han L, Shi X Y, Wang Z N, Liu D H 2013 Acta Phys. Sin. 62 104201 (in Chinese) [孙彦彦, 韩璐, 史晓玉, 王兆娜, 刘大禾 2013 物理学报 62 104201]

    [7]

    Kang M, Feng T H, Wang H T, Li J S 2012 Opt. Express 20 15882

    [8]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304

    [9]

    Pors A, Nielsen M G, Eriksen R L, Bozhevolnyi S I 2013 Nano Lett. 13 829

    [10]

    Wei Z Y, Cao Y, Su X P, Gong Z J, Long Y, Li H Q 2013 Opt. Express 21 010739

    [11]

    Cheng J R, Mosallaei H 2014 Opt. Lett. 39 2719

    [12]

    Pfeiffer C, Grbic A 2013 Appl. Phys. Lett. 102 231116

    [13]

    Qu S W, Wu W W, Chen B J, Yi H, Bai X, Ng K B, Chan C H 2015 Sci. Rep. 5 963

    [14]

    Pu M B, Chen P, Wang C T, Wang Y Q, Zhao Z Y, Hu C G, Huang C, Luo X G 2013 Aip Adv. 3 052136

    [15]

    Aieta F, Genevet P, Kats M A, Yu N F, Blanchard R Gaburro Z, Capasso F 2012 Nano Lett. 12 4932

    [16]

    Sun S L, Yang K Y, Wang C M, Juan T K, Chen T K, Liao C Y, He Q, Xiao S Y, Kung W T, Guo G Y, Zhou L, Tsai D P 2012 Nano Lett. 12 6223

    [17]

    Yang Q L, Gu J Q, Wang D Y, Zhang X Q, Tian Z, Ouyang C M, Ranjan S, Han J G, Zhang W L 2014 Opt. Express 22 25931

    [18]

    Saeidi C, Weide D V D 2015 Appl. Phys. Lett. 106 113110

    [19]

    Wang J F, Qu S B, Ma H, Xu Z, Zhang A X, Zhou H, Chen H Y, Li Y F 2012 Appl. Phys. Lett. 101 201104

    [20]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Acta Phys. Sin. 63 084103 (in Chinese) [李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学 2014 物理学报 63 084103]

    [21]

    Xu J J, Zhang H C, Zhang Q, Cui T J 2015 Appl. Phys. Lett. 106 021102

    [22]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light-Sci. Appl. 3 e218

    [23]

    Hasman E, Kleiner V, Biener G, Niv A 2003 Appl. Phys. Lett. 82 328

  • [1] Wang Yue, Wang Hao-Jie, Cui Zi-Jian, Zhang Da-Chi. Bound states in continuum domain of double resonant ring metal metasurfaces. Acta Physica Sinica, 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [2] Zhang Xiang, Wang Yue, Zhang Wan-Ying, Zhang Xiao-Ju, Luo Fan, Song Bo-Chen, Zhang Kuang, Shi Wei. Narrow band absorption and sensing properties of the THz metasurface based on single-walled carbon nanotubes. Acta Physica Sinica, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [3] Bai Yu, Zhang Zhen-Fang, Yang Hai-Bin, Cai Li, Yu Dian-Long. Metasurface acoustic liner of engine based on asymmetric absorber. Acta Physica Sinica, 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [4] Huang Xiao-Jun, Gao Huan-Huan, He Jia-Hao, Luan Su-Zhen, Yang He-Lin. Dynamically tunable frequency-domain multifunctional reconfigurable polarization conversion metasurface. Acta Physica Sinica, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [5] Fan Hui-Ying, Luo Jie. Research progress of non-Hermitian electromagnetic metasurfaces. Acta Physica Sinica, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [6] Sun Sheng, Yang Ling-Jun, Sha Wei. Offset-fed vortex wave generator based on reflective metasurface. Acta Physica Sinica, 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681
    [7] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [8] Li Jun-Yi, Ye Yu-Er, Ling Chen, Li Lin, Liu Yang, Xia Yong. Generation of focusing ring of metalens and its application in optical trapping of cold molecules. Acta Physica Sinica, 2021, 70(16): 167802. doi: 10.7498/aps.70.20210443
    [9] Ding Ji-Fei, Liu Wen-Bing, Li Han-Hui, Luo Yi, Xie Chen-Kai, Huang Li-Rong. Design and fabrication of off-axis meta-lens with large focal depth. Acta Physica Sinica, 2021, 70(19): 197802. doi: 10.7498/aps.70.20202235
    [10] Wu Han, Wu Jing-Yu, Chen Zhuo. Strong coupling between metasurface based Tamm plasmon microcavity and exciton. Acta Physica Sinica, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [11] Yan Wei, Wang Ji-Yong, Qu Yu-Rui, Li Qiang, Qiu Min. Tunable metasurfaces based on phase-change materials. Acta Physica Sinica, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [12] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [13] Fan Qing-Bin, Xu Ting. Research progress of imaging technologies based on electromagnetic metasurfaces. Acta Physica Sinica, 2017, 66(14): 144208. doi: 10.7498/aps.66.144208
    [14] Gao Xiang-Jun, Zhu Li, Guo Wen-Long. Design and application of high polarized purity metasurface lens. Acta Physica Sinica, 2017, 66(20): 204102. doi: 10.7498/aps.66.204102
    [15] Hu Chang-Bao, Xu Ji, Ding Jian-Ping. Subwavelength light focusing using quadric cylinder surface plasmonic lens with gold film slits filled with dielectric. Acta Physica Sinica, 2016, 65(13): 137301. doi: 10.7498/aps.65.137301
    [16] Yu Ji-Bao, Ma Hua, Wang Jia-Fu, Feng Ming-De, Li Yong-Feng, Qu Shao-Bo. High-efficiency ultra-wideband polarization conversion metasurfaces based on split elliptical ring resonators. Acta Physica Sinica, 2015, 64(17): 178101. doi: 10.7498/aps.64.178101
    [17] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Wu Xiang, Xu Zhuo, Zhang An-Xue. Circularly polarized wave reflection focusing metasurfaces. Acta Physica Sinica, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [18] Yin Xiang-Bao, Liu Yong-Jun, Zhang Ling-Li, Lü Yue-Lan, Huo Bo-Fan, Sun Wei-Min. Liquid crystal lens with large-range electrically controllable variable focal length. Acta Physica Sinica, 2015, 64(18): 184212. doi: 10.7498/aps.64.184212
    [19] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Chen Hong-Ya, Xu Zhuo, Zhang An-Xue. Design and experimental verification of a two-dimensional phase gradient metasurface used for radar cross section reduction. Acta Physica Sinica, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [20] Zhu Yan-Wu, Shi Shun-Xiang, Liu Ji-Fang, Sun Yan-Ling. A full electromagnetic analysis of a filter substrate lens for spatiotemporal terahertz pulse shaping. Acta Physica Sinica, 2009, 58(2): 1042-1045. doi: 10.7498/aps.58.1042
Metrics
  • Abstract views:  6812
  • PDF Downloads:  502
  • Cited By: 0
Publishing process
  • Received Date:  09 November 2015
  • Accepted Date:  14 December 2015
  • Published Online:  05 April 2016

/

返回文章
返回