Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Abnormal behaviors in lock-in transition of the vortices in melt textured growth of YBa2Cu3O7- crystals

Wu Dong-Jie Xu Ke-Xi Tang Tian-Wei

Citation:

Abnormal behaviors in lock-in transition of the vortices in melt textured growth of YBa2Cu3O7- crystals

Wu Dong-Jie, Xu Ke-Xi, Tang Tian-Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The magnetization behavior of the layered anisotropic high-Tc superconductor in the mixed state Hc1 H Hc2 has a feature that when the angle between the applied magnetic field H and the CuO plane (a-b plane) is less than a critical value ( L), the vortex lattice is converted from three-dimensional structure into two-dimensional structure, forming a phenomenon so called the lock-in transition, where the flux lines are completely parallel to the a-b plane, and the vertical component of the magnetic induction B丄 (perpendicular to the a-b plane) is consequently zero. So far, there have still existed the differences in the physical explanation of the lock-in phenomenon. For the lock-in phenomenon occurring in the region between the CuO planes, it can be considered to be caused by the transverse Meissner effect. However, for the one occurring in other extended correlated defect areas, such as twin boundaries in YBa2Cu3O7- (YBCO) crystal, this phenomenon is believed to be the results of the energy linearization of the vortices trapped in the defect channels. Many theoretical and experimental studies have revealed the existence of the lock-in behaviors related to the microstructure properties of the superconductor crystals. Therefore, the research of the lock-in transition behavior will be helpful to understand the intrinsic pinning properties of the layered anisotropic superconductors, and the phase transition process in the vortex system. In this paper, we systematically measure the magnetic torque signal in melt texture growth YBCO (MTG-YBCO) bulk and observe an abnormal lock-in transition behavior in the vortex system. The critical angle of the lock-in transition is found to be directly proportional to the strength of the magnetic field, which is contrary to the observations in the common cases. According to the framework of the Ginzburg-Landau theory and the kink structure model of the vortex line, we discuss the abnormal phenomenon, and propose that there is a type of extend-correlated defect structure, which is parallel to the a-b plane, in the MTG-YBCO crystal. The relationship between the critical angle of the lock-in transition to the temperature and the magnetic field is established theoretically, and the theoretical results coincide well with the torque measurements.
      Corresponding author: Xu Ke-Xi, kxxu@staff.shu.edu.cn
    • Funds: Project Supported by the Opening Project of Shanghai Key Laboratory of High Temperature Superconductors, China (Grant No. 14DZ2260700).
    [1]

    Tinkham M 1996 Introduction to Superconductivity (New York: Dover Publication, Inc) pp314-383

    [2]

    Blatter G 1994 Rev. Mod. Phys. 66 1285

    [3]

    Farrell D E, Rice J P, Ginsberg D M, Liu J Z 1990 Phys. Rev. Lett. 64 1573

    [4]

    Feinberg D, Villard C 1990 Phys. Rev. Lett. 65 919

    [5]

    Kwok W K, Welp U, Vinokur V M, Fleshler S, Downey J, Crabtree G W 1991 Phys. Rev. Lett. 67 390

    [6]

    Bulaevskii L N 1991 Phys. Rev. B 44 910

    [7]

    Sonin E B 1993 Phys. Rev. B 48 10487

    [8]

    Zhukov A A, Perkins G K, Thomas J V, Caplin A D, Kupfer H, Wolf T 1997 Phys. Rev. B 56 3481

    [9]

    Kogan V G 1988 Phys. Rev. B 38 7049

    [10]

    Vulcanescu V, Collin G, Kojima H, Tanaka I, Fruchter L 1994 Phys. Rev. B 50 4139

    [11]

    Zech D, Rossel C, Lense L, Keller H, Lee S L, Karpinski J 1996 Phys. Rev. B 54 12535

    [12]

    Kohout S, Schneider T, Roos J, Keller H, Sasagawa T, Takagi H 2007 Phys. Rev. B 76 064513

    [13]

    Bosma S, Weyeneth S, Puzniak R, Erb A, Keller H 2012 Phys. Rev. B 86 174502

    [14]

    Babu N H, Jackson K P, Dennis A R, Shi Y H, Mancini C, Durrell J H, Cardwell D A 2012 Supercond. Sci. Technol 25 075012

    [15]

    Tang T W, Wu D J, Wu X D, Xu K X 2015 Physica C 519 159

    [16]

    Murakami M 1992 Melt Processed High-Temperature Superconductors (Singapore: World Scientific) pp101-105

    [17]

    Silhanek A, Civale L, Candia S, Nieva G 1999 Phys. Rev. B 59 13620

    [18]

    Avila M A, Civale L, Silhanek V, Ribeiro R A, Lima O F, Lanza H 2001 Phys. Rev. B 64 144502

    [19]

    Kortyka A, Puzniak R, Wisniewski A, Zehetmayer M, Weber H W, Cai Y Q, Yao X 2010 Supercond. Sci. Technol. 23 065001

    [20]

    Kortyka A, Puzniak R, Wisniewski A, Zehetmayer M, Weber H W, Tang C Y, Yao X, Conder K 2010 Phys. Rev. B 82 054510

    [21]

    de Gennes P G 1966 Superconductivity of Metals and Alloys (New York: Benjamin W A) p227

    [22]

    Blatter G, Feigel'man M V, Geshkenbein V B, Larkin A I, Vinokur V M 1994 Rev. Mod. Phys. 66 1125

  • [1]

    Tinkham M 1996 Introduction to Superconductivity (New York: Dover Publication, Inc) pp314-383

    [2]

    Blatter G 1994 Rev. Mod. Phys. 66 1285

    [3]

    Farrell D E, Rice J P, Ginsberg D M, Liu J Z 1990 Phys. Rev. Lett. 64 1573

    [4]

    Feinberg D, Villard C 1990 Phys. Rev. Lett. 65 919

    [5]

    Kwok W K, Welp U, Vinokur V M, Fleshler S, Downey J, Crabtree G W 1991 Phys. Rev. Lett. 67 390

    [6]

    Bulaevskii L N 1991 Phys. Rev. B 44 910

    [7]

    Sonin E B 1993 Phys. Rev. B 48 10487

    [8]

    Zhukov A A, Perkins G K, Thomas J V, Caplin A D, Kupfer H, Wolf T 1997 Phys. Rev. B 56 3481

    [9]

    Kogan V G 1988 Phys. Rev. B 38 7049

    [10]

    Vulcanescu V, Collin G, Kojima H, Tanaka I, Fruchter L 1994 Phys. Rev. B 50 4139

    [11]

    Zech D, Rossel C, Lense L, Keller H, Lee S L, Karpinski J 1996 Phys. Rev. B 54 12535

    [12]

    Kohout S, Schneider T, Roos J, Keller H, Sasagawa T, Takagi H 2007 Phys. Rev. B 76 064513

    [13]

    Bosma S, Weyeneth S, Puzniak R, Erb A, Keller H 2012 Phys. Rev. B 86 174502

    [14]

    Babu N H, Jackson K P, Dennis A R, Shi Y H, Mancini C, Durrell J H, Cardwell D A 2012 Supercond. Sci. Technol 25 075012

    [15]

    Tang T W, Wu D J, Wu X D, Xu K X 2015 Physica C 519 159

    [16]

    Murakami M 1992 Melt Processed High-Temperature Superconductors (Singapore: World Scientific) pp101-105

    [17]

    Silhanek A, Civale L, Candia S, Nieva G 1999 Phys. Rev. B 59 13620

    [18]

    Avila M A, Civale L, Silhanek V, Ribeiro R A, Lima O F, Lanza H 2001 Phys. Rev. B 64 144502

    [19]

    Kortyka A, Puzniak R, Wisniewski A, Zehetmayer M, Weber H W, Cai Y Q, Yao X 2010 Supercond. Sci. Technol. 23 065001

    [20]

    Kortyka A, Puzniak R, Wisniewski A, Zehetmayer M, Weber H W, Tang C Y, Yao X, Conder K 2010 Phys. Rev. B 82 054510

    [21]

    de Gennes P G 1966 Superconductivity of Metals and Alloys (New York: Benjamin W A) p227

    [22]

    Blatter G, Feigel'man M V, Geshkenbein V B, Larkin A I, Vinokur V M 1994 Rev. Mod. Phys. 66 1125

  • [1] Yi Qi-Ru, Xiong Pei-Yu, Wang Huan-Hua, Li Gang, Wang Yun-Kai, Dong En-Yang, Chen Yu, Shen Zhi-Bang, Wu Yun, Yuan Jie, Jin Kui, Gao Chen. Microstructure study of YBa2Cu3O7-δ thin film with synchrotron-based three-dimensional reciprocal space mapping. Acta Physica Sinica, 2023, 72(4): 046101. doi: 10.7498/aps.72.20221776
    [2] Chen Chang-Zhao, Cai Chuan-Bing, Liu Zhi-Yong, Ying Li-Liang, Gao Bo, Liu Jin-Lei, Lu Yu-Ming. On epitaxial structure and flux pinning of NdBa2Cu3O7-δ/YBa2Cu3O7-δ superconducting multilayers. Acta Physica Sinica, 2008, 57(7): 4371-4378. doi: 10.7498/aps.57.4371
    [3] Chen Zhen-Ping, Xue Yun-Cai, Su Yu-Ling, Gong Shi-Cheng, Zhang Jin-Cang. Phase structures and local electron structures of Gd-doped YBa2Cu3O7-δ systems. Acta Physica Sinica, 2005, 54(11): 5382-5388. doi: 10.7498/aps.54.5382
    [4] ZHANG BO, TIAN MING-LIANG, ZHANG YU-HENG. SCALING BEHAVIOURS OF VORTEX TRANSPORT IN 2H-Nb0.9Ta0.1Se2. Acta Physica Sinica, 2001, 50(11): 2221-2225. doi: 10.7498/aps.50.2221
    [5] WANG FENG, SUN GUO-QING, KONG XIANG-MU, SHAN LEI, JIN XIN, ZHANG HONG. MAGNETIC RESPONSE OF MELT-TEXTURED YBa2Cu3O7-δ BULK SUPERCONDUCTOR. Acta Physica Sinica, 2001, 50(8): 1590-1595. doi: 10.7498/aps.50.1590
    [6] LIU FENG, HUANG JUN-WEI, LIU WEI, XIAO LING, REN HONG-TAO, JIAO YU-LEI, ZHENG MING-HUI, YAN SHOU-SHENG. EXPERIMENTAL STUDY OF LOCAL FLUX CREEP ON A CYLINDRICAL MELTING-TEXTURED GROWN YBa2Cu3O7-δ SAMPLE AT APPLIED FIELDS. Acta Physica Sinica, 2001, 50(10): 2001-2007. doi: 10.7498/aps.50.2001
    [7] WANG ZHI-HE, CAO XIAO-WEN, FANG JUN, CHEN ZHI-YOU, LI KE-BIN. RELATION BETWEEN IRREVERSIBILITY LINE AND VORTEX-GLASS LINE IN EPITAXIAL YBa2Cu3O7-δ THIN FILMS. Acta Physica Sinica, 1999, 48(1): 154-162. doi: 10.7498/aps.48.154
    [8] XU KE-XI, ZHOU SHI-PING, BAO JIA-SHAN. NONLINEAR OPTICAL RESPONSE OF EPITAXIAL YBa2Cu3O7-δ FILMS. Acta Physica Sinica, 1998, 47(2): 307-315. doi: 10.7498/aps.47.307
    [9] WANG ZHI-HE, CAO XIAO-WEN, CHEN JING-LIN, LI KE-BIN. EFFECTIVE PINNING POTENTIAL IN EPITAXIAL YBa2Cu3O7-δ THIN FILM. Acta Physica Sinica, 1998, 47(10): 1720-1726. doi: 10.7498/aps.47.1720
    [10] CAI MENG, FANG MING-HU, ZHANG XUAN-JIA, JIAO ZHENG-KUAN, ZHANG QI-RUI, RONG XI-SHEN, ZHAO BAI-RU. STUDIES OF FLUX CREEP IN Y0.9Eu0.1Ba2Cu3O7-δ. Acta Physica Sinica, 1994, 43(9): 1517-1522. doi: 10.7498/aps.43.1517
    [11] ZHANG YI-TONG, JIN XIN, ZHANG CHANG-GUI, JIN JI-RONG, YAO XI-XIAM, JI ZHENG-MING, SUN ZHI-JIAN, YANG SEN-ZU. A STUDY ON MAGNETIC THERMALLY FLUX CREEP OF YBa2Cu3O7-δ THIN FILM. Acta Physica Sinica, 1993, 42(7): 1174-1178. doi: 10.7498/aps.42.1174
    [12] XIE XIAO-MING, CHEN TING-GUO. ON THE ORDER OF THE ORTHORHOMBIC-TETRAGONAL PHASE TRANSITION IN YBa2Cu3O7-δ. Acta Physica Sinica, 1992, 41(11): 1830-1836. doi: 10.7498/aps.41.1830
    [13] JIN XIN, ZHANG YI-TONG, LU RUI-XI, YAO XI-XIAN, LIU FENG-SHENG, MOU HUI-LIN, WU XIAO-ZU, ZHOU LIAN. CORRELATION BETWEEN THE IRREVERSIBILITY LINE AND PINNING POTENTIAL IN HIGH-Tc SUPERCONDUCTOR YBa2Cu3O7-δ. Acta Physica Sinica, 1992, 41(1): 123-127. doi: 10.7498/aps.41.123
    [14] FAN HONG-CHANG, JIN XIN, LU MU, ZHANG YI-TONG, XU XIAO-NONG, YAO XI-XIAN. MAGNETIZATION MEASUREMENT OF ANISOTROPIC CRITICAL CURRENT DENSITIES IN MELT TEXTURED YBa2Cu3O7-y. Acta Physica Sinica, 1992, 41(2): 317-322. doi: 10.7498/aps.41.317
    [15] LIN MING-XI, CHEN GUAN-MIAN, A SHA, XU XIAO-ZHEN. ION COORDINATION AND STRUCTURAL TRANSITION OF YBa2Cu3-xFexOy. Acta Physica Sinica, 1992, 41(1): 128-135. doi: 10.7498/aps.41.128
    [16] YANG YONG-HONG, XING DING-YU, GONG CHANG-DE. METAL-INSULATOR TRANSITION IN YBa2Cu3O7-x. Acta Physica Sinica, 1992, 41(1): 136-143. doi: 10.7498/aps.41.136
    [17] WANG CHENG-ZHANG, WANG HUAI-YU, ZHANG LI-YUAN. CHANGE OF ELECTRONIC STRUCTURES CAUSED BY LOCAL SUBSTITUTION OF Zn FOR Cu IN YBa2Cu3O7 MATERIAL. Acta Physica Sinica, 1991, 40(11): 1862-1868. doi: 10.7498/aps.40.1862
    [18] Zhang Yi-tong Jin Xin Zhang Chang-gui Jin Ji-rong Yao Xi=xian Ji Zheng-ming Sun Zhi-jian Yang Sen-zu. A STUDY ON MAGNETIC THERMALLY FLUX CREEP OF YBa_2Cu_3O_7_,THIN FILM. Acta Physica Sinica, 1991, 40(7): 1174-1178. doi: 10.7498/aps.40.1174
    [19] DU YOU-WEI, QIU ZI-QIANG, TANG HUAN, J. C. WALKER. M?SSBAUER STUDY OF MAGNETIC ORDERING IN YBa2Cu3O7-δ. Acta Physica Sinica, 1990, 39(3): 472-478. doi: 10.7498/aps.39.472
    [20] HE ZHEN-HUI, CHEN ZU-YAO, ZHANG HAN, ZHANG QI-RUI. THE DIFFERENCE OF DOPING EFFECTS BETWEEN YBa2Cu3-xCoxOy AND YBa2Cu3-xZnxOy. Acta Physica Sinica, 1989, 38(1): 60-67. doi: 10.7498/aps.38.60
Metrics
  • Abstract views:  4704
  • PDF Downloads:  100
  • Cited By: 0
Publishing process
  • Received Date:  14 December 2015
  • Accepted Date:  11 January 2016
  • Published Online:  05 April 2016

/

返回文章
返回