Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characterization and preliminary application of top-gated graphene ion-sensitive field effect transistors

Wu Chun-Yan Du Xiao-Wei Zhou Lin Cai Qi Jin Yan Tang Lin Zhang Han-Ge Hu Guo-Hui Jin Qing-Hui

Citation:

Characterization and preliminary application of top-gated graphene ion-sensitive field effect transistors

Wu Chun-Yan, Du Xiao-Wei, Zhou Lin, Cai Qi, Jin Yan, Tang Lin, Zhang Han-Ge, Hu Guo-Hui, Jin Qing-Hui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Graphene, a 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, and high mechanical strength). Field-effect transistor is shown to be a very promising candidate for electrically detecting chemical and biological species. Most of the reports on graphene field-effect transistors show that solution-gated graphene field effect transistors have been used so far. Although the traditional solution-gated graphene field effect transistor has high sensitivity, but the graphene channel is contaminated easily. The stability of the device is reduced so that the device cannot be reused. Only very recently, has the top-gated graphene, which is potentially used for pH sensors, been reported. In the top-gated graphene the dielectrics is deposited at the top of graphene. However, the sensitivity is lower than other sensors. To improve the properties, we design and fabricate a top-gated graphene ion-sensitive field effect transistor by using large-area graphene synthesized by chemical vapor deposition. At the top of graphene, HfO2/Al2O3 thin film is deposited by atomic layer deposition. The Al2O3 film plays a role of sensitive membrane, and the HfO2/Al2O3 thin film protects the graphene from contamination of the solution. After depositing the top-gate, because of the shield of the insulation, the boundary between the graphene and the substrate is not clear. And the Raman spectrum indicates the presence of a defective top layer accompanied by an increase in the Raman D peak. After a series of electrical characterizations, compared with solution-gated graphene field effect transistor which directly contacts the graphene channel with the solution, the top-gated graphene ion-sensitive field effect transistor has a high resistance. This increase relative to uncovered grapheme, is attributed to the participation of the top -orbitals in van der Waals bonds to the insulation. The graphene -orbitals contributing to van der Waals bonds have less overlaps and thus result in reduced conductivity. However the output curves and transfer curves show that the top-gated graphene ion-sensitive field effect transistor has higher signal-to-noise ratio and better stability. In view of the biochemical detection, in this paper we also examine the adsorption of single-stranded DNA. Silane functionalization of metal oxide system is a versatile technique that can be used in DNA microarray and nanotechnology. The DNA immobilization process we have developed contains several steps: silanization (APTES), crosslinker attachment (EDC and NHS), reaction with carboxyl-DNA and removal of non-covalently bound DNA. We characterize the process with carboxyl-quantum dots. We also measure the transfer curves before and after the adsorption of DNA, and demonstrate the effectiveness of the functionalized process and the feasibility that the top-gated graphene ion-sensitive field effect transistor is used as the biosensor.
      Corresponding author: Hu Guo-Hui, hu_guohui@126.com;jinqh@mail.sim.ac.cn ; Jin Qing-Hui, hu_guohui@126.com;jinqh@mail.sim.ac.cn
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2014AA06A506), the National Natural Science Foundation of China (Grant Nos. 61501441, 61401442), the Sino-German Program of Cooperation (Grant No. GJHZ 1306), the Project of Shanghai Science and Technology Commission, China (Grant Nos. 14ZR1447300, 15220721700), and the Innovation Program of Shanghai Municipality Education Commission, China (Grant No. 14ZZ095).
    [1]

    Ding X F, Niu M N 1995 Transduc. Microsyst. Technol. 14 1 (in Chinese) [丁辛芳, 牛蒙年 1995 传感器与微系统 14 1]

    [2]

    Kwon D H, Cho B W, Kim C S, Sohn B K 1996 8th International Conference on Solid-State Sensors and Actuators (Eurosensors IX) Stockholm, Sweden, June 25-29, 1995 p441

    [3]

    Zhang G J, Ning Y 2012 Anal. Chim. Acta 749 1

    [4]

    Gonalves D, Prazeres D M F, Chu V, Conde J P 2008 Biosens. Bioelectron. 24 545

    [5]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [6]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [7]

    Yang J J, Li J J, Deng W, Cheng C, Huang M 2015 Acta Phys. Sin. 64 198102 (in Chinese) [杨晶晶, 李俊杰, 邓伟, 程骋, 黄铭 2015 物理学报 64 198102]

    [8]

    Wang L, Feng W, Yang L Q, Zhang J H 2014 Acta Phys. Sin. 63 176801 (in Chinese) [王浪, 冯伟, 杨连乔, 张建华 2014 物理学报 63 176801]

    [9]

    Ang P K, Chen W, Wee A T S, Loh K P 2008 J. Am. Chem. Soc. 13 0 14392

    [10]

    Ohno Y, Maehashi K, Matsumoto K 2010 Biosens. Bioelectron. 26 1727

    [11]

    Rory S, Mulvaney S P, Robinson J T, Tamanaha C R, Sheehan P E 2013 Anal. Chem. 85 509

    [12]

    Chen J H, Cullen W G, Jang C, Fuhrer M S, Williams E D 2009 Phys. Rev. Lett. 102 236805

    [13]

    Wang B, Liddell K L, Wang J J, Koger B, Keating C D, Zhu J 2014 Nano Res. 7 1263

    [14]

    Li X S, Zhu Y W, Cai W W, Borysiak M, Han B Y, Chen D, Piner R D, Colombo L, Ruoff R S 2009 Nano Lett. 9 4359

    [15]

    Ni Z H, Wang H M, Ma Y, Kasim J, Wu Y H, Shen Z X 2008 ACS Nano 2 1033

    [16]

    Liao L, Bai J W, Qu Y Q, Lin Y C, Li Y J, Huang Y, Duan X F 2010 P. Natl. Acad. Sci. USA 107 6711

    [17]

    George S M 2010 Chem. Rev. 110 111

    [18]

    Zhang Y W, Wan L, Cheng X H, Wang Z J, Xia C, Cao D, Jia T T, Yu Y H 2012 J. Inorg. Mater 27 956 (in Chinese) [张有为, 万里, 程新红, 王中健, 夏超, 曹铎, 贾婷婷, 俞跃辉 2012 无机材料学报 27 956]

    [19]

    Zhang Y W, Qiu Z J, Cheng X H, Xie H, Wang H M, Xie X M, Yu Y H, Liu R 2014 J. Phys. D: Appl. Phys. 47 055106

    [20]

    Devor E J, Behlke M A 2005 Idt Integrated Dna Technologies

    [21]

    Gao A, Lu N, Dai P F, Li T, Pei H, Gao X L, Gong Y B, Wang Y L, Fan C H 2011 Nano Lett. 11 3974

    [22]

    Gao A R, Lu N, Wang Y C, Dai P F, Li T, Gao X L, Wang Y L, Fan C H 2012 Nano Lett. 12 5262

    [23]

    Lemme M C, Echtermeyer T J, Baus M, Kurz H 2007 IEEE Electr. Dev. Lett. 28 282

    [24]

    Banerjee S, Sardar M, Gayathri N, Tyagi A K, Raj B 2006 Appl. Phys. Lett. 88 062111

    [25]

    Pan W 2013 M. S. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [潘望 2013 硕士学位论文 (武汉: 华中科技大学)]

    [26]

    Wu Y Q, Ye P D, Capano M A, Xuan Y, Sui Y, Qi M, Cooper J A, Shen T, Pandey D, Prakash G, Reifenberger R 2008 Appl. Phys. Lett. 92 092102

  • [1]

    Ding X F, Niu M N 1995 Transduc. Microsyst. Technol. 14 1 (in Chinese) [丁辛芳, 牛蒙年 1995 传感器与微系统 14 1]

    [2]

    Kwon D H, Cho B W, Kim C S, Sohn B K 1996 8th International Conference on Solid-State Sensors and Actuators (Eurosensors IX) Stockholm, Sweden, June 25-29, 1995 p441

    [3]

    Zhang G J, Ning Y 2012 Anal. Chim. Acta 749 1

    [4]

    Gonalves D, Prazeres D M F, Chu V, Conde J P 2008 Biosens. Bioelectron. 24 545

    [5]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [6]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [7]

    Yang J J, Li J J, Deng W, Cheng C, Huang M 2015 Acta Phys. Sin. 64 198102 (in Chinese) [杨晶晶, 李俊杰, 邓伟, 程骋, 黄铭 2015 物理学报 64 198102]

    [8]

    Wang L, Feng W, Yang L Q, Zhang J H 2014 Acta Phys. Sin. 63 176801 (in Chinese) [王浪, 冯伟, 杨连乔, 张建华 2014 物理学报 63 176801]

    [9]

    Ang P K, Chen W, Wee A T S, Loh K P 2008 J. Am. Chem. Soc. 13 0 14392

    [10]

    Ohno Y, Maehashi K, Matsumoto K 2010 Biosens. Bioelectron. 26 1727

    [11]

    Rory S, Mulvaney S P, Robinson J T, Tamanaha C R, Sheehan P E 2013 Anal. Chem. 85 509

    [12]

    Chen J H, Cullen W G, Jang C, Fuhrer M S, Williams E D 2009 Phys. Rev. Lett. 102 236805

    [13]

    Wang B, Liddell K L, Wang J J, Koger B, Keating C D, Zhu J 2014 Nano Res. 7 1263

    [14]

    Li X S, Zhu Y W, Cai W W, Borysiak M, Han B Y, Chen D, Piner R D, Colombo L, Ruoff R S 2009 Nano Lett. 9 4359

    [15]

    Ni Z H, Wang H M, Ma Y, Kasim J, Wu Y H, Shen Z X 2008 ACS Nano 2 1033

    [16]

    Liao L, Bai J W, Qu Y Q, Lin Y C, Li Y J, Huang Y, Duan X F 2010 P. Natl. Acad. Sci. USA 107 6711

    [17]

    George S M 2010 Chem. Rev. 110 111

    [18]

    Zhang Y W, Wan L, Cheng X H, Wang Z J, Xia C, Cao D, Jia T T, Yu Y H 2012 J. Inorg. Mater 27 956 (in Chinese) [张有为, 万里, 程新红, 王中健, 夏超, 曹铎, 贾婷婷, 俞跃辉 2012 无机材料学报 27 956]

    [19]

    Zhang Y W, Qiu Z J, Cheng X H, Xie H, Wang H M, Xie X M, Yu Y H, Liu R 2014 J. Phys. D: Appl. Phys. 47 055106

    [20]

    Devor E J, Behlke M A 2005 Idt Integrated Dna Technologies

    [21]

    Gao A, Lu N, Dai P F, Li T, Pei H, Gao X L, Gong Y B, Wang Y L, Fan C H 2011 Nano Lett. 11 3974

    [22]

    Gao A R, Lu N, Wang Y C, Dai P F, Li T, Gao X L, Wang Y L, Fan C H 2012 Nano Lett. 12 5262

    [23]

    Lemme M C, Echtermeyer T J, Baus M, Kurz H 2007 IEEE Electr. Dev. Lett. 28 282

    [24]

    Banerjee S, Sardar M, Gayathri N, Tyagi A K, Raj B 2006 Appl. Phys. Lett. 88 062111

    [25]

    Pan W 2013 M. S. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [潘望 2013 硕士学位论文 (武汉: 华中科技大学)]

    [26]

    Wu Y Q, Ye P D, Capano M A, Xuan Y, Sui Y, Qi M, Cooper J A, Shen T, Pandey D, Prakash G, Reifenberger R 2008 Appl. Phys. Lett. 92 092102

  • [1] Chen Shan-Deng, Bai Qing-Shun, Dou Yu-Hao, Guo Wan-Min, Wang Hong-Fei, Du Yun-Long. Simulation research on nucleation mechanism of graphene deposition assisted by diamond grain boundary. Acta Physica Sinica, 2022, 71(8): 086103. doi: 10.7498/aps.71.20211981
    [2] Zhang Yu-Xiang, Peng Yi-Tian, Lang Hao-Jie. Controllable nano-friction of graphene surface by fabricating nanoscale patterning based on atomic force microscopy. Acta Physica Sinica, 2020, 69(10): 106801. doi: 10.7498/aps.69.20200124
    [3] Wang Xiao-Yu, Bi Wei-Hong, Cui Yong-Zhao, Fu Guang-Wei, Fu Xing-Hu, Jin Wa, Wang Ying. Synthesis of photonic crystal fiber based on graphene directly grown on air-hole by chemical vapor deposition. Acta Physica Sinica, 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [4] Bai Qing-Shun, Dou Yu-Hao, He Xin, Zhang Ai-Min, Guo Yong-Bo. Deposition and growth mechanism of graphene on copper crystal surface based on molecular dynamics simulation. Acta Physica Sinica, 2020, 69(22): 226102. doi: 10.7498/aps.69.20200781
    [5] Cui Shu-Wen, Li Lu, Wei Lian-Jia, Qian Ping. Theoretical study of density functional of confined CO oxidation reaction between bilayer graphene. Acta Physica Sinica, 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
    [6] Wang Xiao, Huang Sheng-Xiang, Luo Heng, Deng Lian-Wen, Wu Hao, Xu Yun-Chao, He Jun, He Long-Hui. First-principles study of electronic structure and optical properties of nickel-doped multilayer graphene. Acta Physica Sinica, 2019, 68(18): 187301. doi: 10.7498/aps.68.20190523
    [7] Wang Tian-Hui, Li Ang, Han Bai. First-principles study of graphyne/graphene heterostructure resonant tunneling nano-transistors. Acta Physica Sinica, 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [8] Zhang Xiao-Bo, Qing Fang-Zhu, Li Xue-Song. Clean transfer of chemical vapor deposition graphene film. Acta Physica Sinica, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [9] Song Hang, Liu Jie, Chen Chao, Ba Long. Graphene-based field effect transistor with ion-gel film gate. Acta Physica Sinica, 2019, 68(9): 097301. doi: 10.7498/aps.68.20190058
    [10] Zheng Jia-Jin, Wang Ya-Ru, Yu Ke-Han, Xu Xiang-Xing, Sheng Xue-Xi, Hu Er-Tao, Wei Wei. Field effect transistor photodetector based on graphene and perovskite quantum dots. Acta Physica Sinica, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [11] Yang Hui-Hui, Gao Feng, Dai Ming-Jin, Hu Ping-An. Research progress of direct synthesis of graphene on dielectric layer. Acta Physica Sinica, 2017, 66(21): 216804. doi: 10.7498/aps.66.216804
    [12] Wang Bin, Feng Ya-Hui, Wang Qiu-Shi, Zhang Wei, Zhang Li-Na, Ma Jin-Wen, Zhang Hao-Ran, Yu Guang-Hui, Wang Gui-Qiang. Hydrogen etching of chemical vapor deposition-grown graphene domains. Acta Physica Sinica, 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [13] Ye Peng-Fei, Chen Hai-Tao, Bu Liang-Min, Zhang Kun, Han Jiu-Rong. Synthesis of SnO2 quantum dots/graphene composite and its photocatalytic performance. Acta Physica Sinica, 2015, 64(7): 078102. doi: 10.7498/aps.64.078102
    [14] Han Lin-Zhi, Zhao Zhan-Xia, Ma Zhong-Quan. Process parameters of large single crystal graphene prepared by chemical vapor deposition. Acta Physica Sinica, 2014, 63(24): 248103. doi: 10.7498/aps.63.248103
    [15] Wang Lang, Feng Wei, Yang Lian-Qiao, Zhang Jian-Hua. The pre-treatment of copper for graphene synthesis. Acta Physica Sinica, 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [16] Tang Xin-Yue, Gao Hong, Pan Si-Ming, Sun Jian-Bo, Yao Xiu-Wei, Zhang Xi-Tian. Electrical characteristics of individual In-doped ZnO nanobelt field effect transistor. Acta Physica Sinica, 2014, 63(19): 197302. doi: 10.7498/aps.63.197302
    [17] Liu Jiang-Tao, Huang Jie-Hui, Xiao Wen-Bo, Hu Ai-Rong, Wang Jian-Hui. The influence of gate voltage on electron transport in the graphene field-effect transistor under strong laser field. Acta Physica Sinica, 2012, 61(17): 177202. doi: 10.7498/aps.61.177202
    [18] Zhang Wei, Li Meng-Ke, Wei Qiang, Cao Lu, Yang Zhi, Qiao Shuang-Shuang. Fabrication and I-V characteristics of ZnO nanowire-based field effect transistors. Acta Physica Sinica, 2008, 57(9): 5887-5892. doi: 10.7498/aps.57.5887
    [19] Li Ping-Jian, Zhang Wen-Jing, Zhang Qi-Feng, Wu Jin-Lei. Nanoelectronic logic circuits with carbon nanotube transistors. Acta Physica Sinica, 2007, 56(2): 1054-1060. doi: 10.7498/aps.56.1054
    [20] Li Ping-Jian, Zhang Wen-Jing, Zhang Qi-Feng, Wu Jin-Lei. The influence of contact metal in carbon nanotube transistor. Acta Physica Sinica, 2006, 55(10): 5460-5465. doi: 10.7498/aps.55.5460
Metrics
  • Abstract views:  6074
  • PDF Downloads:  253
  • Cited By: 0
Publishing process
  • Received Date:  09 November 2015
  • Accepted Date:  12 January 2016
  • Published Online:  05 April 2016

/

返回文章
返回