Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multifunctional metasurfaces for terahertz polarization controller

Yang Lei Fan Fei Chen Meng Zhang Xuan-Zhou Chang Sheng-Jiang

Citation:

Multifunctional metasurfaces for terahertz polarization controller

Yang Lei, Fan Fei, Chen Meng, Zhang Xuan-Zhou, Chang Sheng-Jiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Polarization is one of the basic properties of electromagnetic wave conveying valuable information about signal transmission and sensitive measurements. Manipulations of polarization state and amplitude have aroused a lot of research interest in many different fields, especially in the terahertz (THz) regime. Although many researches on THz polarization controller have been carried out, their transmission losses are still difficult to lower in a broad bandwidth. And there are few reports on THz polarization controller which can rotate the polarization state and split beams at the same time. Multifunctional THz devices are required to meet the needs of the progress of THz technology and its applications. In order to overcome this constraint, semiconductor silicon is integrated into the proposed structure to manipulate the polarization state and the amplitude, because of its optical properties with the external pump light. Here, according to the electromagnetic resonance between split rings and silicon rings in Fabry-Prot-like cavity, we propose a metasurfaces-based terahertz polarization controller. The unite cell structure is composed of metal grids-split ring/Si ring-metal grids spaced by silica layers. By using the finite element method in CST Microwave Studio, we simulate the transport and polarization properties under different conditions. The results show that a linear polarization state can be nearly perfectly converted into its orthogonal one from 0.39 to 1.11 THz with a transmission loss of 1 dB, which fits well to the one of multiple-beam interference theory. Then we study the properties of the proposed metasurface structure for oblique incidence. The property of rotating polarization basically keeps stable even at an incident angle of 60 from 0.52 to 1.05 THz. At the end of the paper, the polarization splitting feature of the device is discussed in the THz regime. The results demonstrate that the transmitted and reflected beam power of the device can be tuned by changing the pump light power. The modulation depths of two beams reach more than 90% at 0.5 THz. It is worth noting that the proposed structure can not only rotate the polarization state of transmitted light in a broad bandwidth of 0.72 THz, but also modulate the transmitted and reflected beam power with a wide modulation depth. It can be used as a broad-band, low-loss and tunable terahertz polarization controller which is also insensitive to the incident angle. So it meets the requirements in THz communication, spectrum detection and imaging systems.
      Corresponding author: Fan Fei, fanfei@nankai.edu.cn;sjchang@nankai.edu.cn ; Chang Sheng-Jiang, fanfei@nankai.edu.cn;sjchang@nankai.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2014CB339800), the National Natural Science Foundation of China (Grant Nos. 61171027, 61505088), the Natural Science Foundation of Tianjin, China (Grant No. 15JCQNJC02100), and the National High Technology Research and Development Program of China (Grant No. 2011AA010205).
    [1]

    Tonouchi M 2007 Nat. Photon. 1 97

    [2]

    Leitenstorfer A, Hunsche S, Shah J, Nuss M C, Knox W H 1999 Appl. Phys. Lett. 74 1516

    [3]

    Carr G L, Martin M C, McKinney W R, Jordan K, Neil G R, Williams G P 2002 Nature 420 153

    [4]

    Rochat M, Ajili L, Willenberg H, Faist J, Beere H, Davies G, Linfield E, Ritchie D 2002 Appl. Phys. Lett. 81 1381

    [5]

    Li Z Y, Yao J Q, Xu D G, Zhong K, Wang J L, Bing P B 2011 Chin. Phys. B 20 054207

    [6]

    Federici J, Moeller L 2010 J. Appl. Phys. 107 111101

    [7]

    Awad M M, Cheville R A 2005 Appl. Phys. Lett. 86 221107

    [8]

    Mittleman D M, Gupta M, Neelamani R, Baraniuk R G, Rudd J V, Koch M 1999 Appl. Phys. B 68 1085

    [9]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26

    [10]

    Nagel M, Bolivar P H, Brucherseifer M, Kurz H, Bosserhoff A, Bttner R 2002 Appl. Phys. Lett. 80 154

    [11]

    Li S S, Zhang H, Bai J J, Liu W W, Chang S J 2015 Acta Phys. Sin 64 154201 (in Chinese) [李珊珊, 张昊, 白晋军, 刘伟伟, 常胜江 2015 物理学报 64 154201]

    [12]

    Liu Z Q, Chang S J, Wang X L, Fan F, Li W 2013 Acta Phys. Sin 62 130702 (in Chinese) [刘志强, 常胜江, 王晓雷, 范飞, 李伟 2013 物理学报 62 130702]

    [13]

    Huang Z, Park H, Parrott E P J, Chan H P, Pickwell-MacPherson E 2013 Photon. Tech. Lett. IEEE 25 81

    [14]

    Lin C J, Li Y T, Hsieh C F, Pan R P, Pan C L 2008 Opt. Express 16 2995

    [15]

    Kaveev A K, Kropotov G I, Tsygankova E V, Tzibizov I A, Ganichev S D, Danilov S N, Olbrich P, Zoth C, Kaveeva E G, Zhdanov A I, Ivanov A A, Deyanov R Z, Redlich B 2013 Appl. Opt. 52 B60

    [16]

    Costley A E, Hursey K H, Neill G F, Ward J M 1977 JOSA 67 979

    [17]

    Masson J B, Gallot G 2006 Opt. Lett. 31 265

    [18]

    Qi L M, Yang Z Q, Lan F, Gao X, Li D Z 2010 Chin. Phys. B 19 034210

    [19]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [20]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [21]

    Withayachumnankul W, Abbott D 2009 Photon. J. IEEE 1 99

    [22]

    Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597

    [23]

    Chen H T, Palit S, Tyler T, Bingham C M, Zide J M O, O'Hara J F, Smith D R, Gossard A C, Averitt R D, Padilla W J, Padilla W J, Jokerst N M, Taylor A J 2008 Appl. Phys. Lett. 93 091117

    [24]

    Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J 2009 Nat. Photon. 3 148

    [25]

    Shu J, Qiu C, Astley V, Nickel D, Mittleman D M, Xu Q 2011 Opt. Express 19 26666

    [26]

    Yang Y M, Huang R, Cong L Q, Zhu Z H, Gu J Q, Tian Z, Singh R, Zhang S, Han J G, Zhang W L 2011 Appl. Phys. Lett. 98 121114

    [27]

    Karl N, Reichel K, Chen H T, Taylor A J, Brener I, Benz A, Reno J L, Mendis R, Mittleman D M 2014 Appl. Phys. Lett. 104 091115

    [28]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304

    [29]

    Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbott D 2014 Appl. Phys. Lett. 105 181111

    [30]

    Cong L, Cao W, Zhang X Q, Tian Z, Gu J Q, Singh R, Han J G, Zhang W L 2013 Appl. Phys. Lett. 103 171107

    [31]

    Heyes J E, Withayachumnankul W, Grady N K, Chowdhury D R, Azad A K, Chen H T 2014 Appl. Phys. Lett. 105 181108

    [32]

    Tian W, Wen Q Y, Chen Z, Yang Q H, Jing Y L, Zhang H W 2015 Acta Phys. Sin 64 28401 (in Chinese) [田伟, 文岐业, 陈智, 杨青慧, 荆玉兰, 张怀武 2015 物理学报 64 28401]

    [33]

    Xie Z, Wang X, Ye J, Feng S, Sun W, Akalin T, Zhang Y 2013 Scientific Reports 3 3347

    [34]

    Goldstein D 2011 Polarized Light, Revised and Expanded (CRC Press) pp119-124

    [35]

    Liu W W, Chen S Q, Li Z C, Cheng H, Yu P, Li J X, Tian J G 2015 Opt. Lett. 40 3185

  • [1]

    Tonouchi M 2007 Nat. Photon. 1 97

    [2]

    Leitenstorfer A, Hunsche S, Shah J, Nuss M C, Knox W H 1999 Appl. Phys. Lett. 74 1516

    [3]

    Carr G L, Martin M C, McKinney W R, Jordan K, Neil G R, Williams G P 2002 Nature 420 153

    [4]

    Rochat M, Ajili L, Willenberg H, Faist J, Beere H, Davies G, Linfield E, Ritchie D 2002 Appl. Phys. Lett. 81 1381

    [5]

    Li Z Y, Yao J Q, Xu D G, Zhong K, Wang J L, Bing P B 2011 Chin. Phys. B 20 054207

    [6]

    Federici J, Moeller L 2010 J. Appl. Phys. 107 111101

    [7]

    Awad M M, Cheville R A 2005 Appl. Phys. Lett. 86 221107

    [8]

    Mittleman D M, Gupta M, Neelamani R, Baraniuk R G, Rudd J V, Koch M 1999 Appl. Phys. B 68 1085

    [9]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26

    [10]

    Nagel M, Bolivar P H, Brucherseifer M, Kurz H, Bosserhoff A, Bttner R 2002 Appl. Phys. Lett. 80 154

    [11]

    Li S S, Zhang H, Bai J J, Liu W W, Chang S J 2015 Acta Phys. Sin 64 154201 (in Chinese) [李珊珊, 张昊, 白晋军, 刘伟伟, 常胜江 2015 物理学报 64 154201]

    [12]

    Liu Z Q, Chang S J, Wang X L, Fan F, Li W 2013 Acta Phys. Sin 62 130702 (in Chinese) [刘志强, 常胜江, 王晓雷, 范飞, 李伟 2013 物理学报 62 130702]

    [13]

    Huang Z, Park H, Parrott E P J, Chan H P, Pickwell-MacPherson E 2013 Photon. Tech. Lett. IEEE 25 81

    [14]

    Lin C J, Li Y T, Hsieh C F, Pan R P, Pan C L 2008 Opt. Express 16 2995

    [15]

    Kaveev A K, Kropotov G I, Tsygankova E V, Tzibizov I A, Ganichev S D, Danilov S N, Olbrich P, Zoth C, Kaveeva E G, Zhdanov A I, Ivanov A A, Deyanov R Z, Redlich B 2013 Appl. Opt. 52 B60

    [16]

    Costley A E, Hursey K H, Neill G F, Ward J M 1977 JOSA 67 979

    [17]

    Masson J B, Gallot G 2006 Opt. Lett. 31 265

    [18]

    Qi L M, Yang Z Q, Lan F, Gao X, Li D Z 2010 Chin. Phys. B 19 034210

    [19]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [20]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [21]

    Withayachumnankul W, Abbott D 2009 Photon. J. IEEE 1 99

    [22]

    Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597

    [23]

    Chen H T, Palit S, Tyler T, Bingham C M, Zide J M O, O'Hara J F, Smith D R, Gossard A C, Averitt R D, Padilla W J, Padilla W J, Jokerst N M, Taylor A J 2008 Appl. Phys. Lett. 93 091117

    [24]

    Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J 2009 Nat. Photon. 3 148

    [25]

    Shu J, Qiu C, Astley V, Nickel D, Mittleman D M, Xu Q 2011 Opt. Express 19 26666

    [26]

    Yang Y M, Huang R, Cong L Q, Zhu Z H, Gu J Q, Tian Z, Singh R, Zhang S, Han J G, Zhang W L 2011 Appl. Phys. Lett. 98 121114

    [27]

    Karl N, Reichel K, Chen H T, Taylor A J, Brener I, Benz A, Reno J L, Mendis R, Mittleman D M 2014 Appl. Phys. Lett. 104 091115

    [28]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304

    [29]

    Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbott D 2014 Appl. Phys. Lett. 105 181111

    [30]

    Cong L, Cao W, Zhang X Q, Tian Z, Gu J Q, Singh R, Han J G, Zhang W L 2013 Appl. Phys. Lett. 103 171107

    [31]

    Heyes J E, Withayachumnankul W, Grady N K, Chowdhury D R, Azad A K, Chen H T 2014 Appl. Phys. Lett. 105 181108

    [32]

    Tian W, Wen Q Y, Chen Z, Yang Q H, Jing Y L, Zhang H W 2015 Acta Phys. Sin 64 28401 (in Chinese) [田伟, 文岐业, 陈智, 杨青慧, 荆玉兰, 张怀武 2015 物理学报 64 28401]

    [33]

    Xie Z, Wang X, Ye J, Feng S, Sun W, Akalin T, Zhang Y 2013 Scientific Reports 3 3347

    [34]

    Goldstein D 2011 Polarized Light, Revised and Expanded (CRC Press) pp119-124

    [35]

    Liu W W, Chen S Q, Li Z C, Cheng H, Yu P, Li J X, Tian J G 2015 Opt. Lett. 40 3185

  • [1] Huang Ruo-Tong, Li Jiu-Sheng. Terahertz multibeam modulation reflection-coded metasurface. Acta Physica Sinica, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [2] Yang Dong-Ru, Cheng Yong-Zhi, Luo Hui, Chen Fu, Li Xiang-Cheng. Double-split-ring structure based ultra-broadband and ultra-thin dual-polarization terahertz metasurface with half-reflection and half-transmission. Acta Physica Sinica, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [3] Wei Jin-Zhi, Wang Jin-Hao, Chen Jun-Xue. Coherent control of polarization transformation of Bloch surface waves. Acta Physica Sinica, 2023, 72(21): 214201. doi: 10.7498/aps.72.20231050
    [4] Hui Zhan-Qiang, Gao Li-Ming, Liu Rui-Hua, Han Dong-Dong, Wang Wei. Dual-core negative curvature fiber-based terahertz polarization beam splitter with ultra-low loss and wide bandwidth. Acta Physica Sinica, 2022, 71(4): 048702. doi: 10.7498/aps.71.20211650
    [5] Liu Jing-Yu, Li Wen-Yu, Liu Zhi-Xing, Shu Jing-Yi, Zhao Guo-Zhong. Transmission polarization converter based on V-shaped metasurface in terahertz region. Acta Physica Sinica, 2022, 71(23): 230701. doi: 10.7498/aps.71.20221259
    [6] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [7] Dual-core Negative Curvature Fiber-based Terahertz Polarization Beam Splitter with Ultra-low Loss and Wide Bandwidth. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211650
    [8] Su Yu-Lun, Wei Zheng-Xing, Cheng Liang, Qi Jing-Bo. Terahertz emitters based on ultrafast spin-to-charge conversion. Acta Physica Sinica, 2020, 69(20): 204202. doi: 10.7498/aps.69.20200715
    [9] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [10] Zhang Xue-Jin, Lu Yan-Qing, Chen Yan-Feng, Zhu Yong-Yuan, Zhu Shi-Ning. Terahertz surface polaritons. Acta Physica Sinica, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [11] Wang Jing-Li, Liu Yang, Zhong Kai. Dual-core terahertz polarization splitter based on porous fibers with near-tie units. Acta Physica Sinica, 2017, 66(2): 024209. doi: 10.7498/aps.66.024209
    [12] Jin Ke, Liu Yong-Qiang, Han Jun, Yang Chong-Min, Wang Ying-Hui, Wang Hui-Na. Middle-wave infrared and broadband polarization conversion based on metamaterial. Acta Physica Sinica, 2017, 66(13): 134201. doi: 10.7498/aps.66.134201
    [13] Fu Ya-Nan, Zhang Xin-Qun, Zhao Guo-Zhong, Li Yong-Hua, Yu Jia-Yi. A broadband polarization converter based on resonant ring in terahertz region. Acta Physica Sinica, 2017, 66(18): 180701. doi: 10.7498/aps.66.180701
    [14] Zhang Xiao-Xu, Zhang Sheng-Hai, Wu Tian-An, Sun Wei-Yang. Polarization switching characteristics of polarization maintaining optical feedback and orthogonal optical injection of 1550 nm-VCSEL. Acta Physica Sinica, 2016, 65(21): 214206. doi: 10.7498/aps.65.214206
    [15] Zhou Zhen-Li, Xia Guang-Qiong, Deng Tao, Zhao Mao-Rong, Wu Zheng-Mao. Multiple polarization switching in mutually coupled vertical-cavity surface emitting lasers. Acta Physica Sinica, 2015, 64(2): 024208. doi: 10.7498/aps.64.024208
    [16] Zhong Dong-Zhou, Ji Yong-Qiang, Deng Tao, Zhou Kai-Li. Manipulation of the polarization switching and the nonlinear dynamic behaviors of the vertical-cavity surface-emitting laser subjected to optical injection by EO modulation. Acta Physica Sinica, 2015, 64(11): 114203. doi: 10.7498/aps.64.114203
    [17] Li Shan-Shan, Chang Sheng-Jiang, Zhang Hao, Bai Jin-Jun, Liu Wei-Wei. A THz polarization splitter made from suspended dual-core porous fiber. Acta Physica Sinica, 2014, 63(11): 110706. doi: 10.7498/aps.63.110706
    [18] Fan Fei, Guo Zhan, Bai Jin-Jun, Wang Xiang-Hui, Chang Sheng-Jiang. Magnetically tunable magneto-photonic crystals for multifunctional terahertz polarization controller. Acta Physica Sinica, 2011, 60(8): 084219. doi: 10.7498/aps.60.084219
    [19] Li Yi-Yu, Gu Pei-Fu, Li Ming-Yu, Liu Xu, Yang Hui. Analysis of the all-angle polarization beam splitting effect of the multi-layered wavy films. Acta Physica Sinica, 2006, 55(2): 910-913. doi: 10.7498/aps.55.910
    [20] Li Yi-Yu, Gu Pei-Fu, Li Ming-Yu. Design of wide-angle and broad-band two-dimensional photonic crystal polarization splitter by the automatic shaping mechanism. Acta Physica Sinica, 2005, 54(8): 3889-3893. doi: 10.7498/aps.54.3889
Metrics
  • Abstract views:  6792
  • PDF Downloads:  462
  • Cited By: 0
Publishing process
  • Received Date:  08 December 2015
  • Accepted Date:  07 January 2016
  • Published Online:  05 April 2016

/

返回文章
返回