Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Inclined glass-sand flow and the angle of repose

Zhang Yu Wei Yan-Fang Peng Zheng Jiang Yi-Min Duan Wen-Shan Hou Mei-Ying

Citation:

Inclined glass-sand flow and the angle of repose

Zhang Yu, Wei Yan-Fang, Peng Zheng, Jiang Yi-Min, Duan Wen-Shan, Hou Mei-Ying
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Systematic experimental study on inclined orifice flow and the measurement of the angle of repose are carried out in this work. The inclined orifice flow is formed by glass beads in an inclined channel. The flow is discharged near the bottom of the channel under gravity. The flow rates are measured at various inclination angles of the channel and opening sizes of the orifice. We then record the inclination angle when the rate becomes zero. We compare this zero-rate inclination angle with the repose angle of glass-beads, and the internal friction angle is determined by the yield stress obtained from a direct shear experiment. It is interesting to find that the experimental values at these three measured critical angles are equal within the experimental errors: 1) the supplementary angle of the extrapolating inclined angle at which the flow rate becomes zero and the inclined hole of diameter approaches infinitely large value (i. e. D), s= 180-c, where c is the critical angle for the inclined hole of diameter D and cc(D); 2) the repose angle r of a cone-shaped pile, which is formed when particles fall from the top point of the heap onto a smooth bottom plate; and 3) the internal friction angle that is measured by direct shear experiment. This result intends to support that the solid-liquid transitions occurring in the inclined orifice flow and free surface of granular heap, and the Coulomb yield occurring in the bulk of the granular solid all originate from the same critical property. Owing to the fact that the internal stresses and strains of samples in the three cases all have complicated and nonuniform distributions so that they cannot be analyzed quantitatively at present, Only some qualitative discussion on this issue is given in this paper.
      Corresponding author: Hou Mei-Ying, mayhou@iphy.ac.cn
    • Funds: Project supported by the Special Fund for Earthquake Research of China (Grant No. 201208011), the National Natural Science Foundation of China (Grant Nos. 11274354, 11047003), and the Strategic Priority Research Program-SJ-10 of the Chinese Academy of Sciences (Grant No. XDA04020200).
    [1]

    Jaeger H M, Nagel S R, Behringer R P 1996 Rev. Mod. Phys. 68 1259

    [2]

    Sheldon H G, Durian D J 2010 Granular Matter 12 579

    [3]

    Thomas C C, Durian D J 2015 Phys. Rev. Lett. 114 178001

    [4]

    Thomas C C, Durian D J 2013 Phys. Rev. E 87 052201

    [5]

    Janda A, Zuriguel I, and Maza D 2012 Phys. Rev. Lett. 108 248001

    [6]

    Peng Z, Jiang Y M 2011 Acta Phys. Sin. 60 054501 [彭政, 蒋亦民 2011 物理学报 60 054501]

    [7]

    Rubio-Largo S M, Janda A, Maza D, Zuriguel I, Hidalgo R C 2015 Phys. Rev. Lett. 114 238002

    [8]

    Ar'evaloab R, Garcimartnb A, Maza D 2007 Eur. Phys. J. E 23 191

    [9]

    Christian T V, Dimon P 2001 Granular Matter 3 151

    [10]

    Reydellet G, Rioual F E 2000 Europhys. Lett. 51 27

    [11]

    Pennec T L, Ammi M, Messager J C, Valancea A 1999 Eur. Phys. J. B 7 657

    [12]

    Narayanan M, Douglas J D 1997 Science 28 275

    [13]

    Baxter G W, Behringer R P 1989 Phys. Rev. Lett. 62 2825

    [14]

    Beverloo W A, Lengier H A 1961 Chem. Eng. Sci. 15 260

    [15]

    Jaeger H M, Liu C H, Nagel S R 1989 Phys. Rev. Lett. 62 40

    [16]

    Nagel S R 1992 Rev. Mod. Phys. 64 321

    [17]

    Bocquet L, Charlaix E, Ciliberto S, Crassous J 1998 Nature 396 24

    [18]

    Christian M D, Gerald H R, Jamie L M, Masami Nakagawa 1988 Phys. Rev. E 57 4991

    [19]

    Courrech du Pont S, Gondret P, Perrin B, Rabaud M 2003 Europhys. Lett. 61 492

    [20]

    Hornbaker D J, Albert R 1997 Nature 387 765

    [21]

    Tegzes P, Albert R, Paskvan M, Baraba'si A L, Vicsek T, Schiffer P 1999 Phys. Rev. E 60 5823

    [22]

    Boltenhagen P 1999 Eur. Phys. J. B 12 75

    [23]

    Jose M V, Antonio C, Antonio R 2000 Phys. Rev. E 62 6851

    [24]

    Aguirre M A, Nerone N, Calvo A, Ippolito I, Bideau D 2000 Phys. Rev. E 62 738

    [25]

    Albert R, Albert I, Hornbaker D, Schiffer P, Baraba'si A L 1997 Phys. Rev. E 56 6271

    [26]

    Azadeh S, Kudrolli A 2001 Phys. Rev. E 64 051301

    [27]

    Evesque P 1989 Phys. Rev. Lett. 62 44

    [28]

    Tennakoon S G K, Behringer R P 1998 Phys. Rev. Lett. 81 794

    [29]

    Grasselli Y, Herrmann H J 1997 Physica A 246 301

    [30]

    Liu C, Jeager H M, Nagel S R 1991 Phys. Rev. A 43 7091

    [31]

    Bagnold R A 1954 Proc. R. Soc. London A 49 225

    [32]

    Lajeunesse E, Mangeney-Castelnau A, Vilotte J P 2004 Phys. Fluids 16 2371

    [33]

    Liu Z C 2008 Measuring the Angle of Repose of Granular Systems Using Hollow Cylinders (New York: Academic Press) pp33-40

    [34]

    Zhang Q, Li Y C, Hou M Y, Jiang Y M, Liu M 2012 Phys. Rev. E 85 031306

    [35]

    Khidas Y, Jia X 2009 Sound Scattering in Dense Granular Media (Beijing: Science Press) pp4328-4336

    [36]

    Schwedes J 2003 Granular Matter 5 1

  • [1]

    Jaeger H M, Nagel S R, Behringer R P 1996 Rev. Mod. Phys. 68 1259

    [2]

    Sheldon H G, Durian D J 2010 Granular Matter 12 579

    [3]

    Thomas C C, Durian D J 2015 Phys. Rev. Lett. 114 178001

    [4]

    Thomas C C, Durian D J 2013 Phys. Rev. E 87 052201

    [5]

    Janda A, Zuriguel I, and Maza D 2012 Phys. Rev. Lett. 108 248001

    [6]

    Peng Z, Jiang Y M 2011 Acta Phys. Sin. 60 054501 [彭政, 蒋亦民 2011 物理学报 60 054501]

    [7]

    Rubio-Largo S M, Janda A, Maza D, Zuriguel I, Hidalgo R C 2015 Phys. Rev. Lett. 114 238002

    [8]

    Ar'evaloab R, Garcimartnb A, Maza D 2007 Eur. Phys. J. E 23 191

    [9]

    Christian T V, Dimon P 2001 Granular Matter 3 151

    [10]

    Reydellet G, Rioual F E 2000 Europhys. Lett. 51 27

    [11]

    Pennec T L, Ammi M, Messager J C, Valancea A 1999 Eur. Phys. J. B 7 657

    [12]

    Narayanan M, Douglas J D 1997 Science 28 275

    [13]

    Baxter G W, Behringer R P 1989 Phys. Rev. Lett. 62 2825

    [14]

    Beverloo W A, Lengier H A 1961 Chem. Eng. Sci. 15 260

    [15]

    Jaeger H M, Liu C H, Nagel S R 1989 Phys. Rev. Lett. 62 40

    [16]

    Nagel S R 1992 Rev. Mod. Phys. 64 321

    [17]

    Bocquet L, Charlaix E, Ciliberto S, Crassous J 1998 Nature 396 24

    [18]

    Christian M D, Gerald H R, Jamie L M, Masami Nakagawa 1988 Phys. Rev. E 57 4991

    [19]

    Courrech du Pont S, Gondret P, Perrin B, Rabaud M 2003 Europhys. Lett. 61 492

    [20]

    Hornbaker D J, Albert R 1997 Nature 387 765

    [21]

    Tegzes P, Albert R, Paskvan M, Baraba'si A L, Vicsek T, Schiffer P 1999 Phys. Rev. E 60 5823

    [22]

    Boltenhagen P 1999 Eur. Phys. J. B 12 75

    [23]

    Jose M V, Antonio C, Antonio R 2000 Phys. Rev. E 62 6851

    [24]

    Aguirre M A, Nerone N, Calvo A, Ippolito I, Bideau D 2000 Phys. Rev. E 62 738

    [25]

    Albert R, Albert I, Hornbaker D, Schiffer P, Baraba'si A L 1997 Phys. Rev. E 56 6271

    [26]

    Azadeh S, Kudrolli A 2001 Phys. Rev. E 64 051301

    [27]

    Evesque P 1989 Phys. Rev. Lett. 62 44

    [28]

    Tennakoon S G K, Behringer R P 1998 Phys. Rev. Lett. 81 794

    [29]

    Grasselli Y, Herrmann H J 1997 Physica A 246 301

    [30]

    Liu C, Jeager H M, Nagel S R 1991 Phys. Rev. A 43 7091

    [31]

    Bagnold R A 1954 Proc. R. Soc. London A 49 225

    [32]

    Lajeunesse E, Mangeney-Castelnau A, Vilotte J P 2004 Phys. Fluids 16 2371

    [33]

    Liu Z C 2008 Measuring the Angle of Repose of Granular Systems Using Hollow Cylinders (New York: Academic Press) pp33-40

    [34]

    Zhang Q, Li Y C, Hou M Y, Jiang Y M, Liu M 2012 Phys. Rev. E 85 031306

    [35]

    Khidas Y, Jia X 2009 Sound Scattering in Dense Granular Media (Beijing: Science Press) pp4328-4336

    [36]

    Schwedes J 2003 Granular Matter 5 1

  • [1] Hu Jun-Rong, Kong Peng, Bi Ren-Gui, Deng Ke, Zhao He-Ping. Topological corner states in acoustic honeycomb structure. Acta Physica Sinica, 2022, 71(5): 054301. doi: 10.7498/aps.71.20211848
    [2] Qi Ke-Wu, Zhao Yu-Hong, Tian Xiao-Lin, Peng Dun-Wei, Sun Yuan-Yang, Hou Hua. Phase field crystal simulation of effect of misorientation angle on low-angle asymmetric tilt grain boundary dislocation motion. Acta Physica Sinica, 2020, 69(14): 140504. doi: 10.7498/aps.69.20200133
    [3] Xie Wen-Tao, Li Ruo-Ru, Peng Zheng, Jiang Yi-Min. Maximum ceasing angle of inclination andflux formula for granular orifice flow in water. Acta Physica Sinica, 2020, 69(10): 104501. doi: 10.7498/aps.69.20200217
    [4] Zhang Dong-Dong, Tan Jian-Guo, Li Hao, Hou Ju-Wei. Fine flow structure and mixing characteristic in supersonic flow induced by a lobed mixer. Acta Physica Sinica, 2017, 66(10): 104702. doi: 10.7498/aps.66.104702
    [5] Zhang Zhi-Dong, Gao Si-Min, Wang Hui, Wang Hong-Yan. Resonance mode of an equilateral triangle with triangle notch. Acta Physica Sinica, 2014, 63(12): 127301. doi: 10.7498/aps.63.127301
    [6] Chen Ran, Liu A-Di, Shao Lin-Ming, Hu Guang-Hai, Jin Xiao-Li. Analysis on the azimuthal velocity fluctuation of drift-wave turbulence and zonal flow via dynamic programming based time-delay estimation technique in a linear magnetized plasma device. Acta Physica Sinica, 2014, 63(18): 185201. doi: 10.7498/aps.63.185201
    [7] Jia Ru-Juan, Wang Cang-Long, Yang Yang, Gou Xue-Qiang, Chen Jian-Min, Duan Wen-Shan. Friction phenomena in two-dimensional Frenkel-Kontorova model with hexagonal symmetry lattice. Acta Physica Sinica, 2013, 62(6): 068104. doi: 10.7498/aps.62.068104
    [8] Liu Wei, Guo Li-Xin, Meng Xiao, Zheng Fan. Secondary electromagnetic polarimetric scattering from dune surface. Acta Physica Sinica, 2013, 62(14): 144213. doi: 10.7498/aps.62.144213
    [9] Lü Jian, Yang Guang. Mass spectrum and mixing angle of axial-vector mesons. Acta Physica Sinica, 2011, 60(10): 101201. doi: 10.7498/aps.60.101201
    [10] Peng Zheng, Jiang Yi-Min. Maximum ceasing angle of inclination and flux formula for granular orifice flow. Acta Physica Sinica, 2011, 60(5): 054501. doi: 10.7498/aps.60.054501
    [11] Liu Qiang, Gong Ma Li, Li Chen, Gong Wu-Peng, Lu Fu-Yuan, Chen Gang. Corner-pumped Yb:YAG lasers. Acta Physica Sinica, 2005, 54(2): 721-725. doi: 10.7498/aps.54.721
    [12] ZHOU JIN-YUAN, LI LI-YUN, YE CHAO-HUI. NUMERICAL CALCULATION TO THE EULER ANGLES FOR A SHAPED SELECTIVE PULSE. Acta Physica Sinica, 1996, 45(7): 1107-1112. doi: 10.7498/aps.45.1107
    [13] ZHU DONG-PEI, WANG REN-CHUAN, WANG GUI-XING. STATISTICAL ANGLE OF QUANTUM MIXED STATES. Acta Physica Sinica, 1992, 41(4): 543-549. doi: 10.7498/aps.41.543
    [14] SHI XIN, LI XIN-ZHOU. SOLID ANGULAR DEFICIT AND REPULSIVE GRAVITATIONAL FIELD. Acta Physica Sinica, 1991, 40(3): 353-358. doi: 10.7498/aps.40.353
    [15] LI ZONG-QUAN, ZHANG LI-DE, HE YI-ZHEN. LOW ANGLE GRAIN BOUNDARIES IN HCP METAL α-Ti. Acta Physica Sinica, 1985, 34(8): 1064-1067. doi: 10.7498/aps.34.1064
    [16] SHU CHANG-QING, XU GANG, LIN LEI. TEMPORAL AND SPATIAL DISTRIBUTION OF DIRECTOR ANGLES IN SOLITON EXPERIMENTS OF LIQUID CRYSTALS. Acta Physica Sinica, 1985, 34(1): 88-96. doi: 10.7498/aps.34.88
    [17] YE CHAO-HUI, QIU JIAN-QING, LI LI-YUN, SUN BO-QIN. ACCURATE AND QUICK SETTING OF MAGIC ANGLE. Acta Physica Sinica, 1984, 33(12): 1680-1686. doi: 10.7498/aps.33.1680
    [18] . Acta Physica Sinica, 1975, 24(4): 291-300. doi: 10.7498/aps.24.291
    [19] . Acta Physica Sinica, 1956, 12(2): 96-126. doi: 10.7498/aps.12.96
    [20] PAN CHIA-CHENG. ON THE GENERALIZED SLOPE-DEFLECTION EQUATIONS. Acta Physica Sinica, 1955, 11(4): 317-338. doi: 10.7498/aps.11.317
Metrics
  • Abstract views:  5624
  • PDF Downloads:  447
  • Cited By: 0
Publishing process
  • Received Date:  25 November 2015
  • Accepted Date:  22 December 2015
  • Published Online:  05 April 2016

/

返回文章
返回