Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Stress and structure properties of X-ray W/Si multilayer under low temperature annealing

Zhang Jin-Shuai Huang Qiu-Shi Jiang Li Qi Run-Ze Yang Yang Wang Feng-Li Zhang Zhong Wang Zhan-Shan

Citation:

Stress and structure properties of X-ray W/Si multilayer under low temperature annealing

Zhang Jin-Shuai, Huang Qiu-Shi, Jiang Li, Qi Run-Ze, Yang Yang, Wang Feng-Li, Zhang Zhong, Wang Zhan-Shan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The X-ray timing and polarization telescope proposed in China is for imaging spectroscopy in an energy range of 1-30 keV. To obtain the high energy spectrum response with a large effective area, W/Si multilayer mirrors each with a mirror thickness of only 0.3 mm are used. This makes the figure accuracy of the mirror and the distortion caused by the multilayer stress an important issue during the telescope development. W/Si multilayer mirror is an important component of X-ray telescope for astronomical observation. To reduce the effect of the multilayer stress and maintain a high reflectivity at the same time, the W/Si multilayers prepared by magnetron sputtering deposition are annealed at low temperatures of 150 ℃, 175 ℃ and 200 ℃, respectively, for 3 h. The stress of the multilayer is determined based on the surface figure measurements of each sample before and after annealing. The X-ray reflectance and layer structure of the multilayer are characterized by the grazing incidence X-ray reflectometry (GIXR) and the reflectance fitting curves. The first Bragg peak reflectivity of the as-deposited sample is 67% at 8.04 keV and the multilayer stress is around -260 MPa. After annealing at 150 ℃ for 3 h, the first Bragg peak reflectivity and the layer structure are almost the same as before annealing, while the stress reduces 27%. The fitting results display almost the same interface widths of the multilayer before and after annealing. As the temperature increases to 175 ℃, the first Bragg peak reflectivity drops by about 2%. The multilayer structure begins to deteriorate and the W/Si interface widths increase from 0.346 nm/0.351 nm to 0.356 nm/0.389 nm, according to the fitting results, while the stress reduces about 50%. After annealing at 200 ℃ for 3 h, the stress reduces 60% and the stress decreases down to about -86 MPa. However, the first Bragg peak reflectivity drops by 17%, and the layer structure undergoes significant change after annealing. The W/Si interface widths increase from 0.352 nm/0.364 nm to 0.364 nm/0.405 nm. The GIXR results also show that the d-spacing between the multilayers decreases after annealing, and a higher annealing temperature causes a larger decrease. The stress reduction should be mainly caused by the enhanced atomic diffusions at the interface and inside the layer structure during the annealing. The enlarged interface and the possible compound formation contribute to the decrease of X-ray reflectance and the layer compactness. These results provide important guidance for developing low-stress X-ray multilayer mirrors.
      Corresponding author: Wang Zhan-Shan, wangzs@tongji.edu.cn
    • Funds: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA04060605) and the National Key Scientific Instrument and Equipment Development Projects, China (Grant No. 2012YQ24026402).
    [1]

    Kang H C, Maser J, Stephenson G B, Liu C, Conley R, Macrander A T, Vogt S 2006 Phys. Rev. Lett. 96 127401

    [2]

    Hu X, Zhang J Y, Yang G H, Liu S Y, Ding Y K 2009 Acta Phys. Sin 58 6397 (in Chinese) [胡昕, 张继彦, 杨国洪, 刘慎业, 丁永坤 2009 物理学报 58 6397]

    [3]

    Kondo Y, Ejima T 2002 Surf. Rev. Lett. 9 521

    [4]

    Slemzin V A, Kuzin S V, Zhitnik I A, Delaboudiniere J P, Auchere F, Zhukov A N, Linden R V, Bugaenko O I, Lgnat'ev A N, Mitrofanov A V, Pertsov A A, Oparin S N, Stepanov A I, Afanas'ev A N 2005 Sol. Syst. Res. 39 489

    [5]

    Liu Z, Cheng B W, Li Y M, Li C B, Xue C L, Wang Q M 2013 Chin. Phys. B 22 116804

    [6]

    Gupta R, Gupta A, Leitenberger W, Ruffer R 2012 Phys. Rev. B 85 075401

    [7]

    Najar A, Omi H, Tawara T 2015 Opt. Express 23 7021

    [8]

    Jiang Z, Chen X K 2015 Acta Phys. Sin. 64 216802 (in Chinese) [蒋钊, 陈学康 2015 物理学报 64 216802]

    [9]

    Windt D L 2000 J. Vac. Sci. Technol. A 18 980

    [10]

    Kortright J B, Joksch St, Ziegler E 1991 J. Appl. Phys. 69 168

    [11]

    Dupuis V, Ravet M F, Tte C, Piecuch M, Vidal B 1990 J. Appl. Phys. 68 3348

    [12]

    Montcalm C 2001 Opt. Eng. 40 469

    [13]

    Barthelmess M, Bajt S 2011 Appl. Opt. 50 1610

    [14]

    Wang Z S, Wang F L, Zhang Z, Cheng X B, Qin S J, Chen L Y 2005 Sci. China: Ser. G 48 559

    [15]

    Windt D L 1998 Comput. Phys. 12 360

    [16]

    He X C, Shen H S, Wu Z Q 1990 J. Appl. Phys. 67 3481

    [17]

    Voronov D L, Zubarev E N, Kondratenko V V, Pershin Y P, Sevryukova V A, Bugayev Y A 2006 Thin Solid Films 513 152

    [18]

    Kurmaev E Z, Shamin S N, Galakhov V R, Wiech G, Majkova E, Luby S 1995 J. Mater. Res. 10 907

    [19]

    Cecil T, Miceli A, Quaranta O, Liu C, Rosenmann D, McHugh S, Mazin B 2012 Appl. Phys. Lett. 101 032601

    [20]

    Nyabero S L, van de Kruijs R W E, Yakshin A E, Zoethout E, von Blanckenhagen G, Bosgra J, Loch R A, Bijkerk F 2013 J. Appl. Phys. 113 144310

    [21]

    Jergel M, Bochnček Z, Majkov E, Senderk R, Luby 1996 Appl. Phys. Lett. 69 919

    [22]

    Windt D L, Christensen F E, Craig W W, Hailey C, Harrison F A, Jimenez-Garate M, Kalyanaraman R, Mao P H 2000 J. Appl. Phys. 88 460

    [23]

    Freund L B, Suresh S 2003 Thin Film Materials-Stress, Defect Formation and Surface Evolution (London: Cambridge University Press) pp66-90

    [24]

    Liu C, Conley R, Macrander A T 2006 Proc. SPIE San Diego, August 13, 2006 p63170J

    [25]

    Baglin J, Dempsey J, Hammer W, d'Heurle F, Petersson S, Serrano C 1979 J. Electron. Mater. 8 641

    [26]

    Cao B, Bao L M, Li G P, He S H 2006 Acta Phys. Sin. 55 6550 (in Chinese) [曹博, 包良满, 李公平, 何山虎 2006 物理学报 55 6550]

    [27]

    Li Y S, Wu X C, Liu W, Hou Z Y, Mei H J 2015 Chin. Phys. B 24 126401

    [28]

    Feng D 2000 Metallogrphy Physics (Vol. 1) (Beijing: Science Press) p223 (in Chinese) [冯端 2000 金属物理学 (第一卷)(北京: 科学出版社) 第223页]

  • [1]

    Kang H C, Maser J, Stephenson G B, Liu C, Conley R, Macrander A T, Vogt S 2006 Phys. Rev. Lett. 96 127401

    [2]

    Hu X, Zhang J Y, Yang G H, Liu S Y, Ding Y K 2009 Acta Phys. Sin 58 6397 (in Chinese) [胡昕, 张继彦, 杨国洪, 刘慎业, 丁永坤 2009 物理学报 58 6397]

    [3]

    Kondo Y, Ejima T 2002 Surf. Rev. Lett. 9 521

    [4]

    Slemzin V A, Kuzin S V, Zhitnik I A, Delaboudiniere J P, Auchere F, Zhukov A N, Linden R V, Bugaenko O I, Lgnat'ev A N, Mitrofanov A V, Pertsov A A, Oparin S N, Stepanov A I, Afanas'ev A N 2005 Sol. Syst. Res. 39 489

    [5]

    Liu Z, Cheng B W, Li Y M, Li C B, Xue C L, Wang Q M 2013 Chin. Phys. B 22 116804

    [6]

    Gupta R, Gupta A, Leitenberger W, Ruffer R 2012 Phys. Rev. B 85 075401

    [7]

    Najar A, Omi H, Tawara T 2015 Opt. Express 23 7021

    [8]

    Jiang Z, Chen X K 2015 Acta Phys. Sin. 64 216802 (in Chinese) [蒋钊, 陈学康 2015 物理学报 64 216802]

    [9]

    Windt D L 2000 J. Vac. Sci. Technol. A 18 980

    [10]

    Kortright J B, Joksch St, Ziegler E 1991 J. Appl. Phys. 69 168

    [11]

    Dupuis V, Ravet M F, Tte C, Piecuch M, Vidal B 1990 J. Appl. Phys. 68 3348

    [12]

    Montcalm C 2001 Opt. Eng. 40 469

    [13]

    Barthelmess M, Bajt S 2011 Appl. Opt. 50 1610

    [14]

    Wang Z S, Wang F L, Zhang Z, Cheng X B, Qin S J, Chen L Y 2005 Sci. China: Ser. G 48 559

    [15]

    Windt D L 1998 Comput. Phys. 12 360

    [16]

    He X C, Shen H S, Wu Z Q 1990 J. Appl. Phys. 67 3481

    [17]

    Voronov D L, Zubarev E N, Kondratenko V V, Pershin Y P, Sevryukova V A, Bugayev Y A 2006 Thin Solid Films 513 152

    [18]

    Kurmaev E Z, Shamin S N, Galakhov V R, Wiech G, Majkova E, Luby S 1995 J. Mater. Res. 10 907

    [19]

    Cecil T, Miceli A, Quaranta O, Liu C, Rosenmann D, McHugh S, Mazin B 2012 Appl. Phys. Lett. 101 032601

    [20]

    Nyabero S L, van de Kruijs R W E, Yakshin A E, Zoethout E, von Blanckenhagen G, Bosgra J, Loch R A, Bijkerk F 2013 J. Appl. Phys. 113 144310

    [21]

    Jergel M, Bochnček Z, Majkov E, Senderk R, Luby 1996 Appl. Phys. Lett. 69 919

    [22]

    Windt D L, Christensen F E, Craig W W, Hailey C, Harrison F A, Jimenez-Garate M, Kalyanaraman R, Mao P H 2000 J. Appl. Phys. 88 460

    [23]

    Freund L B, Suresh S 2003 Thin Film Materials-Stress, Defect Formation and Surface Evolution (London: Cambridge University Press) pp66-90

    [24]

    Liu C, Conley R, Macrander A T 2006 Proc. SPIE San Diego, August 13, 2006 p63170J

    [25]

    Baglin J, Dempsey J, Hammer W, d'Heurle F, Petersson S, Serrano C 1979 J. Electron. Mater. 8 641

    [26]

    Cao B, Bao L M, Li G P, He S H 2006 Acta Phys. Sin. 55 6550 (in Chinese) [曹博, 包良满, 李公平, 何山虎 2006 物理学报 55 6550]

    [27]

    Li Y S, Wu X C, Liu W, Hou Z Y, Mei H J 2015 Chin. Phys. B 24 126401

    [28]

    Feng D 2000 Metallogrphy Physics (Vol. 1) (Beijing: Science Press) p223 (in Chinese) [冯端 2000 金属物理学 (第一卷)(北京: 科学出版社) 第223页]

  • [1] Zhou Xian-Ming, Wei Jing, Cheng Rui, Mei Ce-Xiang, Zeng Li-Xia, Wang Xing, Liang Chang-Hui, Zhao Yong-Tao, Zhang Xiao-An. W L-shell X-ray emission induced by C6+ ions with several hundred MeV/u. Acta Physica Sinica, 2022, 71(11): 113201. doi: 10.7498/aps.70.20212322
    [2] Zhou Xian-Ming,  Wei Jing,  Cheng Rui,  Mei Ce-Xiang,  Zeng Li-Xia,  Wang Xing,  Liang Chang-Hui,  Zhao Yong-Tao,  Zhang Xiao-An. W L-shell X-ray emission induced by C6+ions in the energy range of several hundred MeV/u. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212322
    [3] Xing Hai-Ying, Zheng Zhi-Jian, Zhang Zi-Han, Wu Wen-Jing, Guo Zhi-Ying. Tunable electronic structure and optical properties of BlueP/X Te2 (X = Mo, W) van der Waals heterostructures by strain. Acta Physica Sinica, 2021, 70(6): 067101. doi: 10.7498/aps.70.20201728
    [4] Liu Bao-Jian, Duan Wei-Bo, Li Da-Qi, Yu De-Ming, Chen Gang, Wang Tian-Hong, Liu Ding-Quan. Effect of annealing temperature on structure and stress properties of Ta2O5/SiO2 multilayer reflective coatings. Acta Physica Sinica, 2019, 68(11): 114208. doi: 10.7498/aps.68.20182247
    [5] Guo Zi-Zheng, Deng Hai-Dong, Huang Jia-Sheng, Xiong Wan-Jie, Xu Chu-Dong. Spin-torque critical current tuned by stress. Acta Physica Sinica, 2014, 63(13): 138501. doi: 10.7498/aps.63.138501
    [6] Zhou Xian-Ming, Zhao Yong-Tao, Cheng Rui, Wang Xing, Lei Yu, Sun Yuan-Bo, Wang Yu-Yu, Xu Ge, Ren Jie-Ru, Zhang Xiao-An, Liang Chang-Hui, Li Yao-Zong, Mei Ce-Xiang, Xiao Guo-Qing. Study of Si K-shell X-ray emission induced by H+ and Ar11+ ions. Acta Physica Sinica, 2013, 62(8): 083201. doi: 10.7498/aps.62.083201
    [7] Li Jia, Fang Qi, Luo Bing-Chi, Zhou Min-Jie, Li Kai, Wu Wei-Dong. Residual stress analysis by grazing-incidence X-ray diffraction on beryllium films. Acta Physica Sinica, 2013, 62(14): 140701. doi: 10.7498/aps.62.140701
    [8] Wang Cheng, Wang Guan-Yu, Zhang He-Ming, Song Jian-Jun, Yang Chen-Dong, Mao Yi-Fei, Li Yong-Mao, Hu Hui-Yong, Xuan Rong-Xi. Stress models relevant to Raman spectrum in uniaxial/biaxial strained Si. Acta Physica Sinica, 2012, 61(4): 047203. doi: 10.7498/aps.61.047203
    [9] Sun Yun, Wang Sheng-Lai, Gu Qing-Tian, Xu Xin-Guang, Ding Jian-Xu, Liu Wen-Jie, Liu Guang-Xia, Zhu Sheng-Jun. Study of KDP crystal lattice strain and stress by high resolution X-ray diffraction. Acta Physica Sinica, 2012, 61(21): 210203. doi: 10.7498/aps.61.210203
    [10] Luo Qing-Hong, Lou Yan-Zhi, Zhao Zhen-Ye, Yang Hui-Sheng. Effect of annealing on microstructure and mechanical propertiesof AlTiN multilayer coatings. Acta Physica Sinica, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [11] Gu Wen-Ping, Hao Yue, Zhang Jin-Cheng, Wang Chong, Feng Qian, Ma Xiao-Hua. Degradation under high-field stress and gate stress of AlGaN/GaN HEMTs. Acta Physica Sinica, 2009, 58(1): 511-517. doi: 10.7498/aps.58.511
    [12] Yang Fan, Ma Jin, Kong Ling-Yi, Luan Cai-Na, Zhu Zhen. Structural, optical and electrical properties of Ga2(1-x)In2xO3 films prepared by metalorganic chemical vapor deposition. Acta Physica Sinica, 2009, 58(10): 7079-7082. doi: 10.7498/aps.58.7079
    [13] Zhao Dong-Cai, Ren Ni, Ma Zhan-Ji, Qiu Jia-Wen, Xiao Geng-Jie, Wu Sheng-Hu. Study on the mechanical properties of diamond like carbon films with Si doping. Acta Physica Sinica, 2008, 57(3): 1935-1940. doi: 10.7498/aps.57.1935
    [14] Jin Hui-Ming, Felix Adriana, Aroyave Majorri. Influence of yttrium ion-implantation on oxidation behavior of nickel and property of oxide scale at 900℃. Acta Physica Sinica, 2006, 55(11): 6157-6162. doi: 10.7498/aps.55.6157
    [15] Wang Rui-Min, Chen Guang-De, Zhu You-Zhang. Micro-Raman scattering study of hexagonal InGaN epitaxial layer. Acta Physica Sinica, 2006, 55(2): 914-919. doi: 10.7498/aps.55.914
    [16] Shang Shu-Zhen, Shao Jian-Da, Shen Jian, Yi Kui, Fan Zheng-Xiu. Effects of annealing on electron-beam evaporated 193nm Al2O3/MgF2 HR mirrors. Acta Physica Sinica, 2006, 55(5): 2639-2643. doi: 10.7498/aps.55.2639
    [17] He Bao-Ping, Wang Gui-Zhen, Zhou Hui, Gong Jian-Cheng, Luo Yin-Hong, Jiang Jing-He. Predicting NMOS device radiation response at different dose rates in γ-ray environment. Acta Physica Sinica, 2003, 52(1): 188-191. doi: 10.7498/aps.52.188
    [18] GUO DONG, CAI KAI, LI LONG-TU, GUI ZHI-LUN. ELECTRODEPOSITION OF DIAMOND-LIKE CARBON FILMS FROM ORGANIC SOLVENTS AND EFFECTS OF ANNEALING ON THE FILM STRUCTURE. Acta Physica Sinica, 2001, 50(12): 2413-2417. doi: 10.7498/aps.50.2413
    [19] WANG YONG-QIAN, CHEN CHANG-YONG, CHEN WEI-DE, YANG FU-HUA, DIAO HONG-WEI, XU ZHEN-JIA, ZHANG SHI-BIN, KONG GUANG-LIN, LIAO XIAN-BO. THE MICROSTRUCTURE AND ITS HIGH-TEMPERATURE ANNEALING BEHAVIOURS OF a-Si∶O∶H FILM. Acta Physica Sinica, 2001, 50(12): 2418-2422. doi: 10.7498/aps.50.2418
    [20] WANG XIAO-DONG, LIU HUI-YUN, NIU ZHI-CHUAN, FENG SONG-LIN. STUDY OF SELF-ASSEMBLED InAs QUANTUM DOT STRUCTURE COVERED BY InxGa1-xAs(0≤x≤0.3) CAPPING LAYER. Acta Physica Sinica, 2000, 49(11): 2230-2234. doi: 10.7498/aps.49.2230
Metrics
  • Abstract views:  5528
  • PDF Downloads:  186
  • Cited By: 0
Publishing process
  • Received Date:  30 September 2015
  • Accepted Date:  25 January 2016
  • Published Online:  05 April 2016

/

返回文章
返回