Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Single spin channels in Ni-doped CoTiSb semiconductor

Chang Yue-Hua Pan Ru-Jing Si Yu-Hao Lin Ting-Ting Wu Zhi-Min Liu Guo-Dong Cui Yu-Ting

Citation:

Single spin channels in Ni-doped CoTiSb semiconductor

Chang Yue-Hua, Pan Ru-Jing, Si Yu-Hao, Lin Ting-Ting, Wu Zhi-Min, Liu Guo-Dong, Cui Yu-Ting
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Since the spin-transfer effect was predicted in 1996, the direct-current-switched magnetic storage has received much attention. A slender nanopillar with high spin-polarized ratio of the conductive electrons is the most favorable for realizing the direct-current-switched magnetic memory. Wang et al. (Sup. Mic. 2015 86 493) showed a supercell idea used to design the nanopillar array in a semiconductor matrix. Based on this idea, in this paper, the Ni-based single atomic chains are designed in the semiconductive CoTiSb matrix by continuously substituting Ni for Ti, Sb, or Ti-Sb in the [001] crystallographic direction. These single atomic chains are uniformly distributed in the matrix. We investigate the electronic structures and magnetic properties of CoTiSb supercells with the Ni-based single atomic chains by using the first-principle calculations. The calculation results show that the single atomic chains of Ni-Sb (achieved by substituting Ni for Ti) have a high spin polarization and hole conduction properties. The single atomic chain of Ni-Ti (achieved by substituting Ni for Sb) and Ni-Ni single atomic chain (achieved by substituting Ni for Ti and Sb) both have a 100% spin polarization ration at the Fermi level. The Ni-based single atomic chain has an effect on the electronic structures of other atoms surrounding it in about a lattice length and forms a nanopillar with the center of the Ni-based single atomic chain. We predict that CoTiSb matrixes with the Ni-Ti and Ni-Ni single atomic chains will be good candidates for the direct-current-switched magnetic storage.
      Corresponding author: Liu Guo-Dong, gdliu1978@126.com;cytcyt111@163.com ; Cui Yu-Ting, gdliu1978@126.com;cytcyt111@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51271071), the Basic and Frontier Research Project of Chongqing City, China (Grant No. cstc2013jjB50001), the Chongqing City Funds for Distinguished Young Scientists, China (Grant No. cstc2014jcyjjq50003), and the Program for Top Young Talents of Hebei Province, China.
    [1]

    Slonczewski J C 1996 Magn. Magn. Mater. 159 L1

    [2]

    Tsoi M, Jansen A G M, Bass J 1998 Phys. Rev. Lett. 80 4281

    [3]

    Sun J Z 1999 Magn. Magn. Mater. 202 157

    [4]

    Bussman K, Prinz G A, Cheng S F 1999 Appl. Phys. Lett. 75 2476

    [5]

    Albert F J, Katine J A, Buhrman R A 2000 Appl. Phys. Lett. 77 3809

    [6]

    Myers E B, Ralph D C, Katine J A 1999 Science 285 867

    [7]

    Katine J A, Albert F J, Buhrman R A 2000 Phys. Rev. Lett. 84 3139

    [8]

    Jiang Y {2008 Prog. Phys. 28 215 (in Chinese) [姜勇 2008 物理学进展 28 215]

    [9]

    Jin W, Wan Z M, Liu Y W {2011 Acta Phys. Sin. 60 017502 (in Chinese) [金伟, 万振茂, 刘要稳 2011 物理学报 60 017502]

    [10]

    Katine J A, Albert F J, Buhrman R A 2000 Appl. Phys. Lett. 76 354

    [11]

    Berger L 1996 Phys. Rev. B 54 9353

    [12]

    Bazaliy Ya B, Jones B A, Zhang S C 1998 Phys. Rev. B 57 R3213

    [13]

    Weintal X, Myers E B, Brouwer P W 2000 Phys. Rev. B 62 12317

    [14]

    Wang L Y, Dai X F, Wang X T, Li P P, Xia Q L, Zhang Y, Cui Y T, Liu G D 2015 Sup. Mic. 86 493

    [15]

    Segall M D, Lindan P J D, Probert M J 2002 J. Phys. Matter 14 2717

    [16]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [17]

    Perwdew J P, Chevary J A, Vosko S H 1992 Phys. Rev. B 46 6671

    [18]

    Skaftouros S, zdoğan K, aşioğlu E, Galanakis I 2013 Appl. Phys. Lett. 102 022402

  • [1]

    Slonczewski J C 1996 Magn. Magn. Mater. 159 L1

    [2]

    Tsoi M, Jansen A G M, Bass J 1998 Phys. Rev. Lett. 80 4281

    [3]

    Sun J Z 1999 Magn. Magn. Mater. 202 157

    [4]

    Bussman K, Prinz G A, Cheng S F 1999 Appl. Phys. Lett. 75 2476

    [5]

    Albert F J, Katine J A, Buhrman R A 2000 Appl. Phys. Lett. 77 3809

    [6]

    Myers E B, Ralph D C, Katine J A 1999 Science 285 867

    [7]

    Katine J A, Albert F J, Buhrman R A 2000 Phys. Rev. Lett. 84 3139

    [8]

    Jiang Y {2008 Prog. Phys. 28 215 (in Chinese) [姜勇 2008 物理学进展 28 215]

    [9]

    Jin W, Wan Z M, Liu Y W {2011 Acta Phys. Sin. 60 017502 (in Chinese) [金伟, 万振茂, 刘要稳 2011 物理学报 60 017502]

    [10]

    Katine J A, Albert F J, Buhrman R A 2000 Appl. Phys. Lett. 76 354

    [11]

    Berger L 1996 Phys. Rev. B 54 9353

    [12]

    Bazaliy Ya B, Jones B A, Zhang S C 1998 Phys. Rev. B 57 R3213

    [13]

    Weintal X, Myers E B, Brouwer P W 2000 Phys. Rev. B 62 12317

    [14]

    Wang L Y, Dai X F, Wang X T, Li P P, Xia Q L, Zhang Y, Cui Y T, Liu G D 2015 Sup. Mic. 86 493

    [15]

    Segall M D, Lindan P J D, Probert M J 2002 J. Phys. Matter 14 2717

    [16]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [17]

    Perwdew J P, Chevary J A, Vosko S H 1992 Phys. Rev. B 46 6671

    [18]

    Skaftouros S, zdoğan K, aşioğlu E, Galanakis I 2013 Appl. Phys. Lett. 102 022402

Metrics
  • Abstract views:  5164
  • PDF Downloads:  155
  • Cited By: 0
Publishing process
  • Received Date:  26 November 2015
  • Accepted Date:  09 March 2016
  • Published Online:  05 April 2016

/

返回文章
返回