Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A novel radial beam smoothing scheme based on optical Kerr effect

Zhong Zhe-Qiang Hou Peng-Cheng Zhang Bin

Citation:

A novel radial beam smoothing scheme based on optical Kerr effect

Zhong Zhe-Qiang, Hou Peng-Cheng, Zhang Bin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Laser-beam illumination uniformity is a key issue in inertial confinement fusion facilities. In order to fulfill the requirement of improving illumination uniformity, a radial smoothing (RS) scheme is proposed. For smoothing the focal-spot pattern on a short time scale compared with the hydrodynamic response time of the target, the optical Kerr effect with extremely response time is taken into consideration. The basic principle of RS based on optical Kerr effect is that by using the interaction between optical Kerr medium and periodic Gaussian pulses to modulate a periodic spherical phase, to modulate periodic sphericel phase added at the wavefront of laser transmission wave, change the focal-spot size of the laser beam in far field, and further induce the fast radial redistribution of the speckles inside the focal spot in far field, and further induce the fast radial redistribution of the speckles inside the focal spot in far field. This fast radial redistribution of the speckles smoothes the intensity modulation of the focal spot on the target and eventually achieves the beam smoothing in the radial direction. The application of RS in the beamline is detailed. The optical Kerr medium is inserted in the front-end of the bemline, before the laser beam is injected into the main amplifier. The periodic Gaussian pulse for pumping the optical Kerr medium is obtained by the pulse stacking system based on fibers. The pulse width of stacked Gaussian pulse and the time delay between Gaussian pulses are set to be on a picosecond time scale or subpicosecond time scale. The induced refractive index of the optical Kerr medium by the pump laser fits spherical distribution with periodic variation, and results in the radial distribution of the speckles in focal plane. By establishing the theoretical model of the radial beam smoothing scheme implemented with continuous phase plate (CPP), the focusing characteristics of laser beam with RS and CPP are discussed in detail. The influences of the selection of optical Kerr medium and the characteristics of the radial redistribution on the radial smoothing effect are simulated and analyzed. Results indicate that the RS based on optical Kerr effect could efficiently achieve the periodic radial redistribution of the speckles on focal plane, and therefore improves the illumination uniformity in the radial direction while eliminating the stripe pattern presented in far field by one-dimensional smoothing spectral dispersion (SSD). The smoothing performance of RS is different from that of the conventional SSD due to its radial smoothing direction. Moreover, the combined application of RS with continuous phase plate could achieve a better smoothing level with a shorter time. The utilization of radial smoothing scheme in high power laser system may significantly improve the laser-beam irradiation with little influence on the performance of the beamline.
      Corresponding author: Zhang Bin, zhangbinff@sohu.com
    • Funds: Project supported by the Basic Research Program of the National Major Project of China (Grant No. JG2014114).
    [1]

    Yang C L, Yan H, Wang J, Zhang R Z 2013 Opt. Express 21 11171

    [2]

    Shui M, Chu G B, Xing J T, Wu Y C, Zhu B, He W H, Xi T, Gu Y Q 2015 Chin. Phys. B 24 094301

    [3]

    Jiang Y E, Li X C, Zhou S L, Fan W, Lin Z Q 2013 Chin. Opt. Lett. 05 58

    [4]

    Fan X M, L Z W, Lin D Y 2013 Chin. Phys. B 22 124206

    [5]

    Regan S P, Marozas J A, Kelly J H, Boehly T R, Donaldson W R, Jaanimagi P A, Keck R L, Kessler T J, Meyerhofer D D, Seka W, Skupsky S, Smalyuk V A 2000 J. Opt. Soc. Am. B 17 1483

    [6]

    Regan S P, Marozas J A, Craxton R S, Kelly J H, Donaldson W R, Jaanimagi P A, Jacobs-Perkins D, Keck R L, Kessler T J, Meyerhofer D D, Sangster T C, Seka W, Smalyuk V A, Skupsky S, Zuegel J D 2005 J. Opt. Soc. Am. B 22 998

    [7]

    Miyaji G, Miyanaga N, Urushihara S, Suzuki K, Matsuoka S, Nakatsuka M, Morimoto A, Kobayashi T 2002 Opt. Lett. 27 725

    [8]

    Zhong Z Q, Hu X C, Li Z L, Ye R, Zhang B 2015 Acta Phys. Sin. 64 054209 (in Chinese) [钟哲强, 胡小川, 李泽龙, 叶荣, 张彬 2015 物理学报 64 054209]

    [9]

    Ishizumi A, Kasami M, Mishina T, Yamamoto S, Nakahara J 2003 High Pressure Research 23 201

    [10]

    Emery M H, Gardner J H, Lehmberg R H, Obenschain S P 1991 Phys. Fluids B 3 2640

    [11]

    Shaw M, House R 2015 Proc. SPIE 9345 93450E

    [12]

    Wang P, Zhao H, Wang Z H, Li D H, Wei Z Y 2006 Acta Phys. Sin. 55 4161 (in Chinese) [王鹏, 赵环, 王兆华, 李德华, 魏志义 2006 物理学报 55 4161]

    [13]

    Li W J 2013 M. S. Dissertation (Jilin: Changchun University of Science and Technology) (in Chinese) [李文景 2013 硕士学位论文 (吉林: 长春理工大学)]

    [14]

    Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Sources J M 1989 J. Appl. Phys. 66 3546

    [15]

    Liu L Q, Zhang Y, Geng Y C, Wang W Y, Zhu Q H, Jing F, Wei X F, Huang W Q 2014 Acta Phys. Sin. 63 164201 (in Chinese) [刘兰琴, 张颖, 耿远超, 王文义, 朱启华, 景峰, 魏晓峰, 黄晚晴 2014 物理学报 63 164201]

    [16]

    Wisoff P J, Bowers M W, Erbert G V, Browning D F, Jedlovec D R 2004 Proc. SPIE 5341 146

    [17]

    Feng Q 2013 Ph. D. Dissertation (Changsha: Hunan University) (in Chinese) [冯琦 2013 博士学位论文 (长沙: 湖南大学)]

    [18]

    He J F, Wu D K, Wang Q S, Zhu C J, Wu Z 2011 Opt. Prec. Engineer. 19 470 (in Chinese) [贺俊芳, 吴登科, 王屹山, 朱长军, 吴真 2011 光学精密工程 19 470]

    [19]

    Williams E A 2006 Phys. Plasmas 13 056310

    [20]

    Myatt J F, Zhang J, Short R W, Maximov A V, Seka W, Froula D H, Edgell D H, Michel D T, Igumenshchev I V, Hinkel D E, Michel P, Moody J D 2014 Phys. Plasmas 21 055501

    [21]

    Froula D H, Kessler T J, Igumenshchev I V, Betti R, Goncharov V N, Huang H, Hu S X, Hill E, Kelly J H, Meyerhofer D D, Shvydky A, Zuegel J D 2013 Phys. Plasmas 20 840

    [22]

    Wohlfarth C 2008 Landolt-Brnstein-Group Ⅲ Condensed Matter 47 36

    [23]

    Couris S, Renard M, Faucher O, Lavorel B, Chaux R, Koudoumas E, Michaut 2003 Chem. Phys. Lett. 369 318

    [24]

    Zakery A, Elliott S R 2003 J. Non-Cryst. Solids 330 1

    [25]

    Lenz G, Zimmermann J, Katsufuji T, Lines M E, Hwang H Y, Splter S, Slusher R E, Cheong S W, Sanghera J S, Aggarwal I D 2000 Opt. Lett. 25 254

    [26]

    Zhang H, Virally S, Bao Q, Ping L K, Serge M, Nicolas G, Kockaert 2012 Physics: Optics arXiv: 1203 5527

    [27]

    Wu L H, Dai S X, Zhang P Q, Liu Z J, Wang X S, Shen X, Xu T F 2015 Chin. J. Lasers 42 171 (in Chinese) [吴丽华, 戴世勋, 张培晴, 刘自军, 王训四, 沈祥, 徐铁峰, 聂秋华 2015 中国激光 42 171]

  • [1]

    Yang C L, Yan H, Wang J, Zhang R Z 2013 Opt. Express 21 11171

    [2]

    Shui M, Chu G B, Xing J T, Wu Y C, Zhu B, He W H, Xi T, Gu Y Q 2015 Chin. Phys. B 24 094301

    [3]

    Jiang Y E, Li X C, Zhou S L, Fan W, Lin Z Q 2013 Chin. Opt. Lett. 05 58

    [4]

    Fan X M, L Z W, Lin D Y 2013 Chin. Phys. B 22 124206

    [5]

    Regan S P, Marozas J A, Kelly J H, Boehly T R, Donaldson W R, Jaanimagi P A, Keck R L, Kessler T J, Meyerhofer D D, Seka W, Skupsky S, Smalyuk V A 2000 J. Opt. Soc. Am. B 17 1483

    [6]

    Regan S P, Marozas J A, Craxton R S, Kelly J H, Donaldson W R, Jaanimagi P A, Jacobs-Perkins D, Keck R L, Kessler T J, Meyerhofer D D, Sangster T C, Seka W, Smalyuk V A, Skupsky S, Zuegel J D 2005 J. Opt. Soc. Am. B 22 998

    [7]

    Miyaji G, Miyanaga N, Urushihara S, Suzuki K, Matsuoka S, Nakatsuka M, Morimoto A, Kobayashi T 2002 Opt. Lett. 27 725

    [8]

    Zhong Z Q, Hu X C, Li Z L, Ye R, Zhang B 2015 Acta Phys. Sin. 64 054209 (in Chinese) [钟哲强, 胡小川, 李泽龙, 叶荣, 张彬 2015 物理学报 64 054209]

    [9]

    Ishizumi A, Kasami M, Mishina T, Yamamoto S, Nakahara J 2003 High Pressure Research 23 201

    [10]

    Emery M H, Gardner J H, Lehmberg R H, Obenschain S P 1991 Phys. Fluids B 3 2640

    [11]

    Shaw M, House R 2015 Proc. SPIE 9345 93450E

    [12]

    Wang P, Zhao H, Wang Z H, Li D H, Wei Z Y 2006 Acta Phys. Sin. 55 4161 (in Chinese) [王鹏, 赵环, 王兆华, 李德华, 魏志义 2006 物理学报 55 4161]

    [13]

    Li W J 2013 M. S. Dissertation (Jilin: Changchun University of Science and Technology) (in Chinese) [李文景 2013 硕士学位论文 (吉林: 长春理工大学)]

    [14]

    Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Sources J M 1989 J. Appl. Phys. 66 3546

    [15]

    Liu L Q, Zhang Y, Geng Y C, Wang W Y, Zhu Q H, Jing F, Wei X F, Huang W Q 2014 Acta Phys. Sin. 63 164201 (in Chinese) [刘兰琴, 张颖, 耿远超, 王文义, 朱启华, 景峰, 魏晓峰, 黄晚晴 2014 物理学报 63 164201]

    [16]

    Wisoff P J, Bowers M W, Erbert G V, Browning D F, Jedlovec D R 2004 Proc. SPIE 5341 146

    [17]

    Feng Q 2013 Ph. D. Dissertation (Changsha: Hunan University) (in Chinese) [冯琦 2013 博士学位论文 (长沙: 湖南大学)]

    [18]

    He J F, Wu D K, Wang Q S, Zhu C J, Wu Z 2011 Opt. Prec. Engineer. 19 470 (in Chinese) [贺俊芳, 吴登科, 王屹山, 朱长军, 吴真 2011 光学精密工程 19 470]

    [19]

    Williams E A 2006 Phys. Plasmas 13 056310

    [20]

    Myatt J F, Zhang J, Short R W, Maximov A V, Seka W, Froula D H, Edgell D H, Michel D T, Igumenshchev I V, Hinkel D E, Michel P, Moody J D 2014 Phys. Plasmas 21 055501

    [21]

    Froula D H, Kessler T J, Igumenshchev I V, Betti R, Goncharov V N, Huang H, Hu S X, Hill E, Kelly J H, Meyerhofer D D, Shvydky A, Zuegel J D 2013 Phys. Plasmas 20 840

    [22]

    Wohlfarth C 2008 Landolt-Brnstein-Group Ⅲ Condensed Matter 47 36

    [23]

    Couris S, Renard M, Faucher O, Lavorel B, Chaux R, Koudoumas E, Michaut 2003 Chem. Phys. Lett. 369 318

    [24]

    Zakery A, Elliott S R 2003 J. Non-Cryst. Solids 330 1

    [25]

    Lenz G, Zimmermann J, Katsufuji T, Lines M E, Hwang H Y, Splter S, Slusher R E, Cheong S W, Sanghera J S, Aggarwal I D 2000 Opt. Lett. 25 254

    [26]

    Zhang H, Virally S, Bao Q, Ping L K, Serge M, Nicolas G, Kockaert 2012 Physics: Optics arXiv: 1203 5527

    [27]

    Wu L H, Dai S X, Zhang P Q, Liu Z J, Wang X S, Shen X, Xu T F 2015 Chin. J. Lasers 42 171 (in Chinese) [吴丽华, 戴世勋, 张培晴, 刘自军, 王训四, 沈祥, 徐铁峰, 聂秋华 2015 中国激光 42 171]

  • [1] Xu Yu, Wang Chao-Liang, Qin Si-Cheng, Zhang Yu, He Tao, Guo Ying, Ding Ke, Zhang Yu-Ru, Yang Wei, Shi Jian-Jun, Du Cheng-Ran, Zhang Jing. Treatment uniformity of atmospheric pressure plasma on flexible and porous material surface: A critical review. Acta Physica Sinica, 2021, 70(9): 099401. doi: 10.7498/aps.70.20210077
    [2] Xiong Hao, Zhong Zhe-Qiang, Zhang Bin, Sui Zhan, Zhang Xiao-Min. Untrafast smoothing scheme based on dynamic interference structure between beamlets of laser quad. Acta Physica Sinica, 2020, 69(6): 064206. doi: 10.7498/aps.69.20190962
    [3] Tian Bo-Yu, Zhong Zhe-Qiang, Sui Zhan, Zhang Bin, Yuan Xiao. Ultrafast azimuthal beam smoothing scheme based on vortex beam. Acta Physica Sinica, 2019, 68(2): 024207. doi: 10.7498/aps.68.20181361
    [4] Yang Jun-Lan, Zhong Zhe-Qiang, Weng Xiao-Feng, Zhang Bin. Method of statistically characterizing target plane light field properties in inertial confinement fusion device. Acta Physica Sinica, 2019, 68(8): 084207. doi: 10.7498/aps.68.20182091
    [5] Li Teng-Fei, Zhong Zhe-Qiang, Zhang Bin. Novel dynamic wavefront control scheme for ultra-fast beam smoothing. Acta Physica Sinica, 2018, 67(17): 174206. doi: 10.7498/aps.67.20172527
    [6] Jiang Xiu-Juan, Tang Yi-Fan, Wang Li, Li Jing-Hui, Wang Bo, Xiang Ying. Performance of smoothing by spectral dispersion with consideration of the gain characteristic of Nd:glass amplifier. Acta Physica Sinica, 2017, 66(12): 124204. doi: 10.7498/aps.66.124204
    [7] Niu Chen, Liu Zhong-Wei, Yang Li-Zhen, Chen Qiang. Effect of standing wave on the uniformity of a low magnetic field helicon plasma. Acta Physica Sinica, 2017, 66(4): 045201. doi: 10.7498/aps.66.045201
    [8] Li Hong-Xun, Zhang Rui, Zhu Na, Tian Xiao-Cheng, Xu Dang-Peng, Zhou Dan-Dan, Zong Zhao-Yu, Fan Meng-Qiu, Xie Liang-Hua, Zheng Tian-Ran, Li Zhao-Li. Uniform irradiation of a direct drive target by optimizing the beam parameters. Acta Physica Sinica, 2017, 66(10): 105202. doi: 10.7498/aps.66.105202
    [9] Wang Jian, Hou Peng-Cheng, Zhang Bin. A new scheme of spectral dispersion smoothing based on hybrid grating. Acta Physica Sinica, 2016, 65(20): 204201. doi: 10.7498/aps.65.204201
    [10] Zhao Ying-Kui, Ouyang Bei-Yao, Wen Wu, Wang Min. Critical value of volume ignition and condition of nonequilibriem burning of DT in inertial confinement fusion. Acta Physica Sinica, 2015, 64(4): 045205. doi: 10.7498/aps.64.045205
    [11] Li Ze-Long, Zhong Zhe-Qiang, Zhang Bin. Study on multi-beam superposition using complementary polarization control plates. Acta Physica Sinica, 2014, 63(9): 095204. doi: 10.7498/aps.63.095204
    [12] Yan Ji, Zheng Jian-Hua, Chen Li, Tu Shao-Yong, Wei Min-Xi, Yu Bo, Liu Shen-Ye, Jiang Shao-En. The experimental research of pinhole point backlight based on Shenguang-Ⅲ proto-type facility. Acta Physica Sinica, 2013, 62(4): 045203. doi: 10.7498/aps.62.045203
    [13] Zhang Zhan-Wen, Qi Xiao-Bo, Li Bo. Properties and fabrication status of capsules for ignition targets in inertial confinement fusion experiments. Acta Physica Sinica, 2012, 61(14): 145204. doi: 10.7498/aps.61.145204
    [14] Yan Ji, Jiang Shao-En, Su Ming, Wu Shun-Chao, Lin Zhi-Wei. The application of phase contrast imaging to ICF multi-shell capsule diagnosis. Acta Physica Sinica, 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [15] Jing Long-Fei, Huang Tian-Xuan, Jiang Shao-En, Chen Bo-Lun, Pu Yu-Dong, Hu Feng, Cheng Shu-Bo. Model analysis of experiments of implosion symmetry on Shenguang-Ⅱ and Shenguang-Ⅲ prototype laser facilities. Acta Physica Sinica, 2012, 61(10): 105205. doi: 10.7498/aps.61.105205
    [16] Zhan Jiang-Hui, Yao Xin, Gao Fu-Hua, Yang Ze-Jian, Zhang Yi-Xiao, Guo Yong-Kang. Study on intensity distribution inside the frequency conversion crystals for continuous phase plate front-located in inertialconfinement fusion driver. Acta Physica Sinica, 2011, 60(1): 014205. doi: 10.7498/aps.60.014205
    [17] Yao Xin, Gao Fu-Hua, Gao Bo, Zhang Yi-Xiao, Huang Li-Xin, Guo Yong-Kang, Lin Xiang-Di. Optimization of frequency conversion system in inertial confinement fusion driver for frontally located beam smoothing elements. Acta Physica Sinica, 2009, 58(7): 4598-4604. doi: 10.7498/aps.58.4598
    [18] Yao Xin, Gao Fu-Hua, Zhang Yi-Xiao, Wen Sheng-Lin, Guo Yong-Kang, Lin Xiang-Di. Study on the frontal condition for continuous phase plate in inertial confinement fusion driver. Acta Physica Sinica, 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
    [19] Yao Xin, Gao Fu-Hua, Li Jian-Feng, Zhang Yi-Xiao, Wen Sheng-Lin, Guo Yong-Kang. Study on the near field modulation and laser induced damage of beam sampling grating. Acta Physica Sinica, 2008, 57(8): 4891-4897. doi: 10.7498/aps.57.4891
    [20] Li He, Li Xue-Dong, Li Juan, Wu Chun-Ya, Meng Zhi-Guo, Xiong Shao-Zhen, Zhang Li-Zhu. Investigation on the improvement of the stability and uniformity of solution-based metal-induced crystallization poly-Si using surface-embellishment. Acta Physica Sinica, 2008, 57(4): 2476-2480. doi: 10.7498/aps.57.2476
Metrics
  • Abstract views:  5236
  • PDF Downloads:  209
  • Cited By: 0
Publishing process
  • Received Date:  04 December 2015
  • Accepted Date:  10 January 2016
  • Published Online:  05 May 2016

/

返回文章
返回