Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fluid dynamic analysis and experimental study of a temperature sensor array used in meteorological observation

Yang Jie Liu Qing-Quan Dai Wei Mao Xiao-Li Zhang Jia-Hong Li Min

Citation:

Fluid dynamic analysis and experimental study of a temperature sensor array used in meteorological observation

Yang Jie, Liu Qing-Quan, Dai Wei, Mao Xiao-Li, Zhang Jia-Hong, Li Min
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Until now, the air temperature sensors inside thermometer screens and radiation shields are affected by solar radiation, which causes the measuring result to become greater than the actual temperature. The temperature rise can reach 0.8 K or even higher. In this paper, a temperature sensor array design is established for obtaining high precision measurement results. The temperature sensor array consists of an array of radiation shields which features a tube-shape, a platinum resistance sensor array, an aluminum plate with a silver mirror surface and a temperature measurement module that includes a high accuracy thermometer circuit. There is always at least one radiation shield that supplies relatively good ventilation under any airflow direction. A computational fluid dynamic method is implemented to analyze and calculate the temperature rise induced by radiation under various environmental conditions. A correction equation of the temperature rise is obtained by surface fitting using a genetic algorithm. The measurement accuracy can be further improved by this correction equation. In order to verify the performance of the sensor array, a forced ventilation temperature measurement platform is constructed, which consists of a platinum resistance sensor, an L-shaped radiation shield and an air pump. The airflow rate inside the radiation shield can be up to 20~m/s, and the L-shaped radiation shield can horizontally rotate under the control of a software to minimize the error caused by the heated radiation shield. The temperature sensor array, a temperature sensor with traditional radiation shield, and the forced ventilation temperature measurement platform are characterized in the same environment. To experimentally verify the computational fluid dynamic method and the genetic algorithm, a number of contrast tests are performed. The average temperature rise of sensors equipped with the traditional radiation shields is 0.409 K. In contrast, the temperature rise of the sensor array is as low as 0.027K. This temperature sensor array allows the error caused by solar radiation to be reduced by a percentage of approximately 93%. The temperature rise of temperature sensor array, caused by the angular variation of airflow direction is on the order of several mK. When the solar radiation intensity and the airflow rate are 1000W/m2 and 0.1m/s, respectively, the temperature rise is 0.097 K. The temperature rise is 0.05K, when the airflow rate is greater than 0.4 m/s. The temperature rise can be reduced to 0.01 K, when the airflow rate is greater than 2 m/s. The average offset and root mean square error between the correction equation and experimental results are 0.0174 K and 0.0215 K, respectively, which demonstrates the accuracy of the computational fluid dynamic method and genetic algorithm proposed in this research. The temperature measurement accuracy has the potential to be further improved by utilizing the computational fluid dynamics method and the genetic algorithm.
      Corresponding author: Yang Jie, yangjie396768@163.com
    • Funds: Project supported by the Special Scientific Research Fund of Meteorological Public Welfare Profession of China (Grant Nos. GYHY200906037, GYHY201306079), National Natural Science Foundation of China (Grant Nos. 412475042, 61306138), Colleges and Universities in Jiangsu Province Plans to Graduate Research and Innovation, China (Grant No. KYLX15_0866), the Open Research Fund of Key Laboratory of MEMS of Ministry of Education, Southeast University, China (Grant No. 2013-3), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
    [1]

    Dai X G, Liu Y, Wang P 2015 Chin. Phys. B 24 049201

    [2]

    Toggweiler J R, Joellen R 2008 Nature 451 286

    [3]

    Joan B, Oller J M, Huey R B, Gilchrist G W, Luis S 2007 Science 315 1497

    [4]

    Kerr R A 2011 Science 334 173

    [5]

    Wang X J, Zhi R, He W P, Gong Z Q 2012 Chin. Phys. B 21 029201

    [6]

    Qian Z H, Hu J G, Feng G L, Cao Y Z 2012 Chin. Phys. B 21 109203

    [7]

    Dillon M E, George W, Huey R B 2010 Nature 467 704

    [8]

    Wigley T M, Jones P D, Raper S C 1997 Proc. Natl. Acad. Sci. USA 94 8314

    [9]

    Lin X, Hubbard K G, Walter-Shea E A, Brandle J R, Meyer G E 2001 J. Atoms. Ocean. Tech. 18 1470

    [10]

    Lin X 1999 Ph. D. Dissertation (Lincoln: University of Nebraska)

    [11]

    Lin X, Hubbard K G, Walter-Shea E A 2001 J. Atoms. Ocean. Tech. 44 1299

    [12]

    Thomas C K, Smoot A R 2013 J. Atoms. Ocean. Tech. 30 526

    [13]

    Richardson S J, Brock F V, Semmer S R, Jirak C 1999 J. Atoms. Ocean. Tech. 16 1862

    [14]

    Holden Z A, Klene A E, Keefe R F, Moisen G G 2013 Arg. Forest. Meteorol. 180 281

    [15]

    Lopardo G, Bertiglia F, Curci S, Roggero G, Merlone A 2014 Int. J. Climatol. 34 1297

    [16]

    Hubbart J, Link T, Campbell C, Cobos D 2005 Hydrol. Process. 19 1517

    [17]

    Georges C, Kaser G 2002 J. Geophys. Res. 107 ACL 15-1

    [18]

    Erell E, Leal V, Maldonado E 2005 Bound-Lay. Mmteorol. 114 205

    [19]

    Nakamura R, Mahrt L 2005 J. Atmos. Ocean. Tech. 22 1046

    [20]

    Wang X L, Han Y J 2008 Meteorological, Hydrological and Marine Instruments 2 68 (in Chinese) [王晓蕾, 韩有君 2008 气象水文海洋仪器 2 68]

    [21]

    Chen F Z, Qiang H F, Gao W R 2014 Acta Phys. Sin. 62 230206 (in Chinese) [陈福振, 强洪夫, 高巍然 2014 物理学报 62 230206]

    [22]

    Jiang Y M, Liu Y 2013 Acta Phys. Sin. 62 204501 (in Chinese) [蒋亦民, 刘佑 2013 物理学报 62 204501]

    [23]

    Mao X L, Xiao S R, Liu Q Q, Li M, Zhang J H 2014 Acta Phys. Sin. 63 144701 (in Chinese) [冒晓莉, 肖韶荣, 刘清惓, 李敏, 张加宏 2014 物理学报 63 144701]

    [24]

    Wang F J 2004 Computational Fluid Dynamics: Principle and Application of CFD Software 1 (Beijing: Tsinghua University Press) pp6-7 (in Chinese) [王福军 2004 计算流体动力学分析-CFD软件原理与应用1(北京: 清华大学出版社)第6-7页]

    [25]

    Anderson J D (translated by Wu S P, Liu Z S) 2010 Computational Fluid Dynamics: The Basics with Applications (Beijing: China Machine Press) pp179-180 (in Chinese) [约翰D安德森 著(吴颂平, 刘赵森 译) 2010 计算流体力学基础及其应用(北京: 机械工业出版社)第179-180页]

  • [1]

    Dai X G, Liu Y, Wang P 2015 Chin. Phys. B 24 049201

    [2]

    Toggweiler J R, Joellen R 2008 Nature 451 286

    [3]

    Joan B, Oller J M, Huey R B, Gilchrist G W, Luis S 2007 Science 315 1497

    [4]

    Kerr R A 2011 Science 334 173

    [5]

    Wang X J, Zhi R, He W P, Gong Z Q 2012 Chin. Phys. B 21 029201

    [6]

    Qian Z H, Hu J G, Feng G L, Cao Y Z 2012 Chin. Phys. B 21 109203

    [7]

    Dillon M E, George W, Huey R B 2010 Nature 467 704

    [8]

    Wigley T M, Jones P D, Raper S C 1997 Proc. Natl. Acad. Sci. USA 94 8314

    [9]

    Lin X, Hubbard K G, Walter-Shea E A, Brandle J R, Meyer G E 2001 J. Atoms. Ocean. Tech. 18 1470

    [10]

    Lin X 1999 Ph. D. Dissertation (Lincoln: University of Nebraska)

    [11]

    Lin X, Hubbard K G, Walter-Shea E A 2001 J. Atoms. Ocean. Tech. 44 1299

    [12]

    Thomas C K, Smoot A R 2013 J. Atoms. Ocean. Tech. 30 526

    [13]

    Richardson S J, Brock F V, Semmer S R, Jirak C 1999 J. Atoms. Ocean. Tech. 16 1862

    [14]

    Holden Z A, Klene A E, Keefe R F, Moisen G G 2013 Arg. Forest. Meteorol. 180 281

    [15]

    Lopardo G, Bertiglia F, Curci S, Roggero G, Merlone A 2014 Int. J. Climatol. 34 1297

    [16]

    Hubbart J, Link T, Campbell C, Cobos D 2005 Hydrol. Process. 19 1517

    [17]

    Georges C, Kaser G 2002 J. Geophys. Res. 107 ACL 15-1

    [18]

    Erell E, Leal V, Maldonado E 2005 Bound-Lay. Mmteorol. 114 205

    [19]

    Nakamura R, Mahrt L 2005 J. Atmos. Ocean. Tech. 22 1046

    [20]

    Wang X L, Han Y J 2008 Meteorological, Hydrological and Marine Instruments 2 68 (in Chinese) [王晓蕾, 韩有君 2008 气象水文海洋仪器 2 68]

    [21]

    Chen F Z, Qiang H F, Gao W R 2014 Acta Phys. Sin. 62 230206 (in Chinese) [陈福振, 强洪夫, 高巍然 2014 物理学报 62 230206]

    [22]

    Jiang Y M, Liu Y 2013 Acta Phys. Sin. 62 204501 (in Chinese) [蒋亦民, 刘佑 2013 物理学报 62 204501]

    [23]

    Mao X L, Xiao S R, Liu Q Q, Li M, Zhang J H 2014 Acta Phys. Sin. 63 144701 (in Chinese) [冒晓莉, 肖韶荣, 刘清惓, 李敏, 张加宏 2014 物理学报 63 144701]

    [24]

    Wang F J 2004 Computational Fluid Dynamics: Principle and Application of CFD Software 1 (Beijing: Tsinghua University Press) pp6-7 (in Chinese) [王福军 2004 计算流体动力学分析-CFD软件原理与应用1(北京: 清华大学出版社)第6-7页]

    [25]

    Anderson J D (translated by Wu S P, Liu Z S) 2010 Computational Fluid Dynamics: The Basics with Applications (Beijing: China Machine Press) pp179-180 (in Chinese) [约翰D安德森 著(吴颂平, 刘赵森 译) 2010 计算流体力学基础及其应用(北京: 机械工业出版社)第179-180页]

  • [1] Wang Wei, Li Jin-Yang, Mao Guo-Pei, Yang Yan, Gao Zhi-Qiang, Ma Cong, Zhong Xiang-Yu, Shi Qing. Optical fiber high-temperature pressure sensor with weak temperature sensitivity. Acta Physica Sinica, 2024, 73(1): 014208. doi: 10.7498/aps.73.20231155
    [2] Zhou Zi-Tong, Yan Shao-Hua, Zhao Wei-Sheng, Leng Qun-Wen. Research progress of tunneling magnetoresistance sensor. Acta Physica Sinica, 2022, 71(5): 058504. doi: 10.7498/aps.71.20211883
    [3] Feng Jie, Cui Yi-Hao, Li Yu-Dong, Wen Lin, Guo Qi. Influence mechanism and recognition algorithm of CMOS active pixel sensor radiation damage on star sensor star map recognition. Acta Physica Sinica, 2022, 71(18): 184208. doi: 10.7498/aps.71.20220894
    [4] Wan Zhen, Li Cheng, Liu Yu-Jian, Song Xue-Feng, Fan Shang-Chun. Research progress of electromechanical graphene resonant sensors. Acta Physica Sinica, 2022, 71(12): 126801. doi: 10.7498/aps.71.20220215
    [5] Yao Neng-Zhi, Wang Hao, Wang Bin, Wang Xue-Sheng. Venturi-effect rotating concentrators and nonreciprocity characteristics based on transformation hydrodynamics. Acta Physica Sinica, 2022, 71(10): 104701. doi: 10.7498/aps.71.20212361
    [6] Wu Jian, Han Wen, Cheng Zhen-Zhen, Yang Bin, Sun Li-Li, Wang Di, Zhu Cheng-Peng, Zhang Yong, Geng Ming-Xin, Jing Yan. Structure optimization of carbon nanotube ionization sensor based on fluid model. Acta Physica Sinica, 2021, 70(9): 090701. doi: 10.7498/aps.70.20201828
    [7] Ma Tian-Bing, Zi Bao-Wei, Guo Yong-Cun, Ling Liu-Yi, Huang You-Rui, Jia Xiao-Fen. Distributed optical fiber temperature sensor based on self-compensation of fitting attenuation difference. Acta Physica Sinica, 2020, 69(3): 030701. doi: 10.7498/aps.69.20191456
    [8] Qi Yun-Ping, Zhang Ting, Guo Jia, Zhang Bao-He, Wang Xiang-Xian. High performance temperature and refractive index dual-purpose sensor based on the ethanol-sealed metal-dielectric-metal waveguide. Acta Physica Sinica, 2020, 69(16): 167301. doi: 10.7498/aps.69.20200405
    [9] Liu Xu-Yang, Zhang He-Qiu, Li Bing-Bing, Liu Jun, Xue Dong-Yang, Wang Heng-Shan, Liang Hong-Wei, Xia Xiao-Chuan. Characteristics of AlGaN/GaN high electron mobility transistor temperature sensor. Acta Physica Sinica, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [10] Zhao Yong, Cai Lu, Li Xue-Gang, Lü Ri-Qing. A modal interferometer based on single mode fiber-hollow core fiber-single mode fiber structure filled with alcohol and magnetic fluid for simultaneously measuring magnetic field and temperature. Acta Physica Sinica, 2017, 66(7): 070601. doi: 10.7498/aps.66.070601
    [11] Li Zi-Liang, Liao Chang-Rui, Liu Shen, Wang Yi-Ping. Research progress of in-fiber Fabry-Perot interferometric temperature and pressure sensors. Acta Physica Sinica, 2017, 66(7): 070708. doi: 10.7498/aps.66.070708
    [12] Fu Xing-Hu, Xie Hai-Yang, Yang Chuan-Qing, Zhang Shun-Yang, Fu Guang-Wei, Bi Wei-Hong. Research on the temperature sensing characteristics of triple cladding quartz specialty fiber based on cladding mode resonance. Acta Physica Sinica, 2016, 65(2): 024211. doi: 10.7498/aps.65.024211
    [13] Dai Wei, Liu Qing-Quan, Yang Jie, Su Kai-Feng, Han Shang-Bang, Shi Jia-Chi. Computational fluid dynamics analysis and experimental study of sounding temperature sensor. Acta Physica Sinica, 2016, 65(11): 114701. doi: 10.7498/aps.65.114701
    [14] Luo Xue-Xue, Chen Jia-Bi, Hu Jin-Bing, Liang Bin-Ming, Jiang Qiang. Analysis and experimental investigation of the temperature property of sensors based on symmetrical metal-cladding optical waveguide. Acta Physica Sinica, 2015, 64(23): 234208. doi: 10.7498/aps.64.234208
    [15] Mao Xiao-Li, Xiao Shao-Rong, Liu Qing-Quan, Li Min, Zhang Jia-Hong. Fluid dynamic analysis on solar heating error of radiosonde humidity measurement. Acta Physica Sinica, 2014, 63(14): 144701. doi: 10.7498/aps.63.144701
    [16] Li Xin, Wang Lu-Na, Guo Shi-Liang, Li Zhi-Quan, Yang Ming. Doubled temperature measurement range for a single micro-ring sensor. Acta Physica Sinica, 2014, 63(15): 154209. doi: 10.7498/aps.63.154209
    [17] Huang Qin, Leng Feng-Chun, Liang Wen-Yao, Dong Jian-Wen, Wang He-Zhou. Sensitive temperature sensor based on phase properties of photonic crystal. Acta Physica Sinica, 2010, 59(6): 4014-4017. doi: 10.7498/aps.59.4014
    [18] Guo Wen-Gang, Yang Xiu-Feng, Luo Shao-Jun, Li Yong-Nan, Tu Cheng-Hou, Lü Fu-Yun, Wang Hong-Jie, Li En-Bang, Lü Chao. A fiber sensor for measuring gas concentration based on laser’s transient regime. Acta Physica Sinica, 2007, 56(1): 308-312. doi: 10.7498/aps.56.308
    [19] Wang Yi-Ping, Rao Yun-Jiang, Ran Zeng-Ling, Zhu Tao. Unique characteristics of long-period fibre gratings fabricated by high-freque ncy CO2 laser pulses. Acta Physica Sinica, 2003, 52(6): 1432-1437. doi: 10.7498/aps.52.1432
    [20] FAN LIANG-ZAO, XING WEI-FU, JIN RUO-BING. THE DYNAMIC TRANSMITTING PROPERTIES OF A PIEZO-ELECTRIC PRESSURE BAR TRANSDUCER. Acta Physica Sinica, 1977, 26(4): 301-306. doi: 10.7498/aps.26.301
Metrics
  • Abstract views:  5346
  • PDF Downloads:  171
  • Cited By: 0
Publishing process
  • Received Date:  23 December 2015
  • Accepted Date:  23 January 2016
  • Published Online:  05 May 2016

/

返回文章
返回