Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanisms on the GeH/ interactions in germanene/germanane bilayer for tuning band structures

Wu Hong Li Feng

Citation:

Mechanisms on the GeH/ interactions in germanene/germanane bilayer for tuning band structures

Wu Hong, Li Feng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Germanene, one of the most important two-dimensional materials after graphene and silicone have been discovered, is attracting wide attentions due to its many excellent physical properties. Since a suitable band gap is needed for the electronics and optoelectronics, the lack of a band gap has essentially restricted the practical applications of germanene in macroelectronics. In this article, density functional theory calculations with van de Waals corrections is utilized to study the geometric and electronic properties of germanene (Ge), germanane (GeH) and germanene/germanane (Ge/GeH) bilayer. The band gaps for Ge and GeH are zero and 1.16 eV, respectively. For the Ge/GeH bilayer, a considerable binding energy of 273 meV/unit cell is obtained between Ge and GeH layers. This value is smaller than that of Ge bilayer (402 meV/unit cell), but larger than that of GeH bilayer (211 meV/unit cell), indicating a considerable GeH/ bonding. This means that Ge and GeH layers could be combined steadily by the interlayer weak interactions. Meanwhile, a band gap of 85 meV is opened, which is contributed to the breaking of the equivalence of the two sublattices in the Ge sheet, yielding a nonzero band gap at the K point. Charge density difference indicates that the electrons on the s orbital of H transfer to the Ge_p orbital, enhancing the interlayer interactions. It should be noted here that the van de Waals corrections are pretty important for the geometric and electronic properties of the Ge/GeH bilayer. Without the van de Waals corrections, the binding energy of the Ge/GeH bilayer is reduced from 273 meV/unit cell to only 187 meV/unit cell, severely underestimated the strength of the weak forces between Ge and GeH layers, resulting in a much smaller band gap of 50 meV. Interestingly, no band gap is obtained for the sandwich structure GeH/Ge/GeH, in which the equivalence of two sublattices in germanene is kept. Finally, all the results are confirmed by the high accurate hybrid functional calculations. At the Heyd-Scuseria-Ernzerhof level, the band gap of Ge/GeH bilayer is 117 meV, slightly larger than 85 meV at the Perder-Burke-Ernzerhof level. Our work would promote utilizing germanene in microelectronics and call for more efforts in using weak interactions for band structure engineering.
      Corresponding author: Li Feng, njustlifeng@163.com
    • Funds: Project supported by China Postdoctoral Science Foundation (Grant No. 2015M581824), the Jiangsu Post-doctoral Foundation, China (Grant No. 1501070B), and the computational resources utilized in this research were provided by the Shanghai Supercomputer Center.
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [3]

    Vogt P, de Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G 2012 Phys. Rev. Lett. 108 155501

    [4]

    Zhang Z H, Guo W L, Yakobson B I 2013 Nanoscale 5 6381

    [5]

    Ramasubramaniam A, Naveh D, Towe E 2011 Phys. Rev. B 84 205325

    [6]

    Liu Q H, Li L Z, Li Y F, Gao Z X, Chen Z F, Lu J 2012 J. Phys. Chem. C 116 21556

    [7]

    Cahangirov S, Topsakal M, Aktrk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804

    [8]

    O'Hare A, Kusmartsev F V, Kugel K I 2012 Nano Lett. 12 1045

    [9]

    Derivaz M, Dentel D, Stephan R, Hanf M C, Mehdaoui A, Sonnet P, Pirri C 2015 Nano Lett. DOI: 10.1021/acs.nanolett.1025b00085

    [10]

    Liu C C, Jiang H, Yao Y 2011 Phys. Rev. B 84 195430

    [11]

    Liu C C, Feng W, Yao Y 2011 Phys. Rev. Lett. 107 076802

    [12]

    Kaloni T P, Schwingenschlogl U 2013 Chem. Phys. Lett. 583 137

    [13]

    Houssa M, Scalise E, Sankaran K, Pourtois G, Afanas'ev V V, Stesmans A 2011 Appl. Phys. Lett. 98 223107

    [14]

    Bianco E, Butler S, Jiang S S, Restrepo O D, Windl W, Goldberger J E 2013 ACS Nano 7 4414

    [15]

    Jiang S S, Butler S, Bianco E, Restrepo O D, Windl W, Goldberger J E 2014 Nat. Commun. 5 163

    [16]

    Fokin A A, Gerbig D, Schreiner P R 2011 J. Am. Chem. Soc. 133 20036

    [17]

    Li Y, Chen Z 2012 J. Phys. Chem. C 116 4526

    [18]

    Li Y F, Li F Y, Chen Z F 2012 J. Am. Chem. Soc. 134 11269

    [19]

    Kresse G, Hafner J 1993 Phys. Rev. B 48 13115

    [20]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [21]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [22]

    Kristyn SPulay P 1994 Chem. Phys. Lett. 229 175

    [23]

    Grimme S 2007 J. Comput. Chem. 27 17874

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [25]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207

    [26]

    Heyd J, Scuseria G E, Ernzerhof M 2006 J. Chem. Phys. 124 219906

    [27]

    Ma Y, Chen Y, Ma Y, Jiang S, Goldberger J, Vogt T, Lee Y 2014 J. Phys. Chem. C 118 28196

    [28]

    Tang C M, Wang C J, Gao F Z, Zhang Y J, Xu Y, Gong J F 2015 Acta Phys. Sin. 64 096103 (in Chinese) [唐春梅, 王成杰, 高凤志, 张轶杰, 徐燕, 巩江峰 2015 物理学报 64 096103]

    [29]

    Ren X P, Zhou B, Li L T, Wang C L 2013 Chin. Phys. B 22 016801

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [3]

    Vogt P, de Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G 2012 Phys. Rev. Lett. 108 155501

    [4]

    Zhang Z H, Guo W L, Yakobson B I 2013 Nanoscale 5 6381

    [5]

    Ramasubramaniam A, Naveh D, Towe E 2011 Phys. Rev. B 84 205325

    [6]

    Liu Q H, Li L Z, Li Y F, Gao Z X, Chen Z F, Lu J 2012 J. Phys. Chem. C 116 21556

    [7]

    Cahangirov S, Topsakal M, Aktrk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804

    [8]

    O'Hare A, Kusmartsev F V, Kugel K I 2012 Nano Lett. 12 1045

    [9]

    Derivaz M, Dentel D, Stephan R, Hanf M C, Mehdaoui A, Sonnet P, Pirri C 2015 Nano Lett. DOI: 10.1021/acs.nanolett.1025b00085

    [10]

    Liu C C, Jiang H, Yao Y 2011 Phys. Rev. B 84 195430

    [11]

    Liu C C, Feng W, Yao Y 2011 Phys. Rev. Lett. 107 076802

    [12]

    Kaloni T P, Schwingenschlogl U 2013 Chem. Phys. Lett. 583 137

    [13]

    Houssa M, Scalise E, Sankaran K, Pourtois G, Afanas'ev V V, Stesmans A 2011 Appl. Phys. Lett. 98 223107

    [14]

    Bianco E, Butler S, Jiang S S, Restrepo O D, Windl W, Goldberger J E 2013 ACS Nano 7 4414

    [15]

    Jiang S S, Butler S, Bianco E, Restrepo O D, Windl W, Goldberger J E 2014 Nat. Commun. 5 163

    [16]

    Fokin A A, Gerbig D, Schreiner P R 2011 J. Am. Chem. Soc. 133 20036

    [17]

    Li Y, Chen Z 2012 J. Phys. Chem. C 116 4526

    [18]

    Li Y F, Li F Y, Chen Z F 2012 J. Am. Chem. Soc. 134 11269

    [19]

    Kresse G, Hafner J 1993 Phys. Rev. B 48 13115

    [20]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [21]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [22]

    Kristyn SPulay P 1994 Chem. Phys. Lett. 229 175

    [23]

    Grimme S 2007 J. Comput. Chem. 27 17874

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [25]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207

    [26]

    Heyd J, Scuseria G E, Ernzerhof M 2006 J. Chem. Phys. 124 219906

    [27]

    Ma Y, Chen Y, Ma Y, Jiang S, Goldberger J, Vogt T, Lee Y 2014 J. Phys. Chem. C 118 28196

    [28]

    Tang C M, Wang C J, Gao F Z, Zhang Y J, Xu Y, Gong J F 2015 Acta Phys. Sin. 64 096103 (in Chinese) [唐春梅, 王成杰, 高凤志, 张轶杰, 徐燕, 巩江峰 2015 物理学报 64 096103]

    [29]

    Ren X P, Zhou B, Li L T, Wang C L 2013 Chin. Phys. B 22 016801

  • [1] Yang Zi-Hao, Liu Gang, Wu Mu-Sheng, Shi Jing, Ouyang Chu-Ying, Yang Shen-Bo, Xu Bo. Electronic structures and molecular doping of germanane regulated by hydrogen vacancy clusters. Acta Physica Sinica, 2023, 72(12): 127101. doi: 10.7498/aps.72.20230170
    [2] Xiao Mei-Xia, Leng Hao, Song Hai-Yang, Wang Lei, Yao Ting-Zhen, He Cheng. Effects of organic molecule adsorption and substrate on electronic structure of germanene. Acta Physica Sinica, 2021, 70(6): 063101. doi: 10.7498/aps.70.20201657
    [3] Xiang Yang, Zheng Jun, Li Chun-Lei, Guo Yong. Spin filter effect of germanene nanoribbon controlled by local exchange field and electric field. Acta Physica Sinica, 2019, 68(18): 187302. doi: 10.7498/aps.68.20190817
    [4] Li Ya-Sha, Xie Yun-Long, Huang Tai-Huan, Xu Cheng, Liu Guo-Cheng. Molecular structure and properties of salt cross-linked polyethylene under external electric field based on density functional theory. Acta Physica Sinica, 2018, 67(18): 183101. doi: 10.7498/aps.67.20180808
    [5] Jiang Yuan-Qi, Peng Ping. Electronic structures of stable Cu-centered Cu-Zr icosahedral clusters studied by density functional theory. Acta Physica Sinica, 2018, 67(13): 132101. doi: 10.7498/aps.67.20180296
    [6] Qin Zhi-Hui. Recent progress of graphene-like germanene. Acta Physica Sinica, 2017, 66(21): 216802. doi: 10.7498/aps.66.216802
    [7] Sun Jian-Ping, Zhou Ke-Liang, Liang Xiao-Dong. Density functional study on the adsorption characteristics of O, O2, OH, and OOH of B-, P-doped, and B, P codoped graphenes. Acta Physica Sinica, 2016, 65(1): 018201. doi: 10.7498/aps.65.018201
    [8] Zhang Xian, Guo Zhi-Xin, Cao Jue-Xian, Xiao Si-Guo, Ding Jian-Wen. Atomic and electronic structures of silicene and germanene on GaAs(111). Acta Physica Sinica, 2015, 64(18): 186101. doi: 10.7498/aps.64.186101
    [9] Men Fu-Dian, Tian Qing-Song, Chen Xin-Long. Stability of a weakly interacting Fermi gas in a strong magnetic field. Acta Physica Sinica, 2014, 63(12): 120504. doi: 10.7498/aps.63.120504
    [10] Sun Jian-Ping, Miao Ying-Meng, Cao Xiang-Chun. Density functional theory studies of O2 and CO adsorption on the graphene doped with Pd. Acta Physica Sinica, 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [11] Zhang Su-Hua, An Hai-Long, Liu Yu-Zhi, Zhang Zhen-Dong, Geng Jin-Peng, Zhan Yong. Effect of ion-channel interaction permeability of NaK channel. Acta Physica Sinica, 2011, 60(4): 048701. doi: 10.7498/aps.60.048701
    [12] Men Fu-Dian, Wang Bing-Fu, He Xiao-Gang, Wei Qun-Mei. Thermodynamic properties of a weakly interacting Fermi gas in a strong magnetic field. Acta Physica Sinica, 2011, 60(8): 080501. doi: 10.7498/aps.60.080501
    [13] Yuan Du-Qi. Optimization criterion of potential for trappedweakly interacting Bose gas. Acta Physica Sinica, 2011, 60(3): 030307. doi: 10.7498/aps.60.030307
    [14] Cao Qing-Song, Deng Kai-Ming, Chen Xuan, Tang Chun-Mei, Huang De-Cai. Density functional study on the geometric and electronic properties of MC20F20 (M=Li, Na, Be, Mg). Acta Physica Sinica, 2009, 58(3): 1863-1869. doi: 10.7498/aps.58.1863
    [15] Qi Kai-Tian, Yang Chuan-Lu, Li Bing, Zhang Yan, Sheng Yong. Density functional theory study on TinLa(n=1—7) clusters. Acta Physica Sinica, 2009, 58(10): 6956-6961. doi: 10.7498/aps.58.6956
    [16] Tang Chun-Mei, Chen Xuan, Deng Kai-Ming, Hu Feng-Lan, Huang De-Cai, Xia Hai-Yan. The evolution of the structure and electronic properties of the fullerene derivatives C60(CF3)n(n=2, 4, 6, 10): A density functional calculation. Acta Physica Sinica, 2009, 58(4): 2675-2679. doi: 10.7498/aps.58.2675
    [17] Jiang Yan-Ling, Fu Shi-You, Deng Kai-Ming, Tang Chun-Mei, Tan Wei-Shi, Huang De-Cai, Liu Yu-Zhen, Wu Hai-Ping. Density functional study on the structural and electronic properties of fullerene-barbituric acid and its dimmer. Acta Physica Sinica, 2008, 57(6): 3690-3697. doi: 10.7498/aps.57.3690
    [18] Bai Yu-Jie, Fu Shi-You, Deng Kai-Ming, Tang Chun-Mei, Chen Xuan, Tan Wei-Shi, Liu Yu-Zhen, Huang De-Cai. Density functional calculations on the geometric and electronic structures of the endohedral fullerene H2@C60 and its dimmer. Acta Physica Sinica, 2008, 57(6): 3684-3689. doi: 10.7498/aps.57.3684
    [19] Zhao Ming-Wen, Xia Yue-Yuan, Ma Yu-Chen, Liu Xiang-Dong, Ying Min-Ju. . Acta Physica Sinica, 2002, 51(11): 2440-2445. doi: 10.7498/aps.51.2440
    [20] TONG HONG-YONG, GU MU, TANG XUE-FENG, LIANG LING, YAO MING-ZHEN. ELECTRONIC STRUCTURES OF PbWO4 CRYSTAL CALCULATED IN TERMS OF DENSITY FUNCTIONAL THEORY. Acta Physica Sinica, 2000, 49(8): 1545-1549. doi: 10.7498/aps.49.1545
Metrics
  • Abstract views:  5115
  • PDF Downloads:  189
  • Cited By: 0
Publishing process
  • Received Date:  22 December 2015
  • Accepted Date:  05 February 2016
  • Published Online:  05 May 2016

/

返回文章
返回