Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electronic transportation properties and magnetoresistance effects on single TiO2 nanowire under ultraviolet irradiation

Sun Zhi-Gang Pang Yu-Yu Hu Jing-Hua He Xiong Li Yue-Chou

Citation:

Electronic transportation properties and magnetoresistance effects on single TiO2 nanowire under ultraviolet irradiation

Sun Zhi-Gang, Pang Yu-Yu, Hu Jing-Hua, He Xiong, Li Yue-Chou
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The polycrystalline anatase TiO2 nanowires with a diameter of about 300 nm are successfully prepared by the sol-gel method together with electrospinning method under a heat treatment at 500℃. The effect of illumination on electronic transport property and magnetoresistance (MR) effect are studied via voltage-current (V-I) curves measured at room temperature in the cases of the dark and the ultraviolet irradiation. The results show that the V-I plots are straight lines without passing through zero point and the resistance of the nanowire is as high as 7.51011 in the dark. The resistance decreases gradually with the magnetic field increasing and after reaching a minimum 4.71011 at B=0.7 T it turns to increase rapidly, but is still smaller than the resistance without magnetic field, indicating a negative MR effect. With the increase of the magnetic field, the negative MR effect increases and then decreases, and the negative MR achieves a maximum value of -37.5% under B=0.7 T. Interestingly, the resistance of nanowires in the ultraviolet irradiation is reduced by about 10 times compared with that in the dark without applying a magnetic field. As the magnetic field increases, the resistance increases monotonically, presenting a positive MR effect. The MR increases rapidly with the increase of magnetic field, and reaches the maximum positive MR effect 620% under B=1.0 T. At room temperature only a few carriers are generated by the thermal excitation in the TiO2 nanowires, which leads to a large resistance in the dark situation. In the ultraviolet irradiation case, the carrier concentration of the nanowires increases because of the generation of a large number of electron-hole pairs, resulting in huge decrease of resistance compared with in the dark. We attribute the change of the MR to the competition betwen two MR mechanisms: negative MR effect due to the localization of d electron and positive MR effect due to spin splitting of the conduction band. In the dark, due to the low carrier concentration, the negative MR mechanism caused by the localization of d electron is dominant under the magnetic field. However, in the ultraviolet irradiation, because carrier concentration increases hugely due to the irradiation, the positive MR mechanism caused by spin splitting of the conduction band is dominant. The fact that the V-I curves does not pass through zero point implies that the contact between TiO2 nanowire and Pt metal is Schottky contact due to the difference in work function. In the dark, the initial voltage first increases with the increase of magnetic field, and then remains steady. In the ultraviolet irradiation the initial voltage is smaller than in the dark and increases monotonically with the magnetic field increasing. In this paper, the physical mechanism of the electrical transport property and MR effect of TiO2 nanowire are discussed, which may provide a meaningful exploration for developing the new electronic device based on the oxide nanowires.
      Corresponding author: Sun Zhi-Gang, sun_zg@whut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574243, 11174231), and the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology), China (Grant No. 2016-KF-13).
    [1]

    Zhao F 2011 M. S. Dissertation (Harbin: Harbin Institute Technology) (in Chinese) [赵峰 2011 硕士学位论文(哈尔滨: 哈尔滨工业大学)]

    [2]

    Zhang H N 2011 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese) [张弘楠 2011 博士学位论文(长春: 吉林大学)]

    [3]

    Meng D, Yamazaki T, Kikuta T 2014 Sens. Actuator B 190 838

    [4]

    Li H 2013 M. S. Dissertation (Wuhan: Wuhan University of Technology) (in Chinese) [李寒 2013 硕士学位论文(武汉: 武汉理工大学)]

    [5]

    Peng R X, Chen C, Shen W, Guo Y, Geng H W, Wang M T 2009 Acta Phys. Sin. 58 6582 (in Chinese) [彭瑞祥, 陈冲, 沈薇, 郭颖, 耿宏伟, 王命泰 2009 物理学报 58 6582]

    [6]

    Li D D, Wang L L 2012 Acta Phys. Sin. 61 034212 (in Chinese) [李冬冬, 王丽莉 2012 物理学报 61 034212]

    [7]

    Liang P, Wang L, Xiong S Y, Dong Q M, Li X Y 2012 Acta Phys. Sin. 61 053101 (in Chinese) [梁培, 王乐, 熊斯雨, 董前民, 李晓艳 2012 物理学报 61 053101]

    [8]

    Sani S R 2014 Chin. Phys. B 23 107302

    [9]

    Zhang L, Huang B, Liu Y, Zhang L, Zhang R, Mei L 2003 J. Magn. Magn. Mater. 261 257

    [10]

    Peleckis G, Wang X L, Dou S X, Munroe P, Ding J, Lee B 2008 J. Appl. Phys. 103 07D113

    [11]

    Xu Q, Hartmann L, Schmidt H, Hochmuth H, Lorenz M, Spemann D, Grundmann M 2007 Phys. Rev. B 76 134417

    [12]

    Wang D F, Kim J M, Thuy V T T, Seo M S, Lee Y P 2011 J. Korean Phys. Soc. 58 1304

    [13]

    Hartmann L, Xu Q, Schmidt H, Hochmuth H, Lorenz M, Sturm C, Meinecke C, Grundmann M 2006 J. Phys. D 39 4920

    [14]

    Reuss F, Frank S, Kirchner C, Kling R, Gruber T, Waag A 2005 Appl. Phys. Lett. 87 112104

    [15]

    Liang W J, Yuhas B D, Yang P D 2009 Nano Lett. 9 892

    [16]

    Tian Y F, Yan S, Cao Q, Deng J X, Chen Y X, Liu G L, Mei L M, Qiang Y 2009 Phys. Rev. B 79 115209

    [17]

    Tian Y F, Antony J, Souza R, Yan S S, Mei L M, Qiang Y 2008 Appl. Phys. Lett. 92 192109

    [18]

    Jabeen M, Iqbal M A, Kumar R V, Ahmed M, Javed M T 2014 Chin. Phys. B 23 018504

    [19]

    Yu X X, Zhou Y, Liu J, Jin H B, Fang X Y, Cao M S 2015 Chin. Phys. B 24 127307

    [20]

    Akinaga H, Mizuguchi M, Ono K, Oshima M 2000 Appl. Phys. Lett. 76 2600

    [21]

    Shon Y, Yuldashev S U, Fan X J, Fu D J, Kwon Y H, Hong C Y, Kang T W 2001 Jpn. J. Appl. Phys. 40 3082

    [22]

    Viana E R, Ribeiro G M, Oliveira A G, Peres M L, Rubinger R M, Rubinger C P L 2012 Mater. Res. 15 530

  • [1]

    Zhao F 2011 M. S. Dissertation (Harbin: Harbin Institute Technology) (in Chinese) [赵峰 2011 硕士学位论文(哈尔滨: 哈尔滨工业大学)]

    [2]

    Zhang H N 2011 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese) [张弘楠 2011 博士学位论文(长春: 吉林大学)]

    [3]

    Meng D, Yamazaki T, Kikuta T 2014 Sens. Actuator B 190 838

    [4]

    Li H 2013 M. S. Dissertation (Wuhan: Wuhan University of Technology) (in Chinese) [李寒 2013 硕士学位论文(武汉: 武汉理工大学)]

    [5]

    Peng R X, Chen C, Shen W, Guo Y, Geng H W, Wang M T 2009 Acta Phys. Sin. 58 6582 (in Chinese) [彭瑞祥, 陈冲, 沈薇, 郭颖, 耿宏伟, 王命泰 2009 物理学报 58 6582]

    [6]

    Li D D, Wang L L 2012 Acta Phys. Sin. 61 034212 (in Chinese) [李冬冬, 王丽莉 2012 物理学报 61 034212]

    [7]

    Liang P, Wang L, Xiong S Y, Dong Q M, Li X Y 2012 Acta Phys. Sin. 61 053101 (in Chinese) [梁培, 王乐, 熊斯雨, 董前民, 李晓艳 2012 物理学报 61 053101]

    [8]

    Sani S R 2014 Chin. Phys. B 23 107302

    [9]

    Zhang L, Huang B, Liu Y, Zhang L, Zhang R, Mei L 2003 J. Magn. Magn. Mater. 261 257

    [10]

    Peleckis G, Wang X L, Dou S X, Munroe P, Ding J, Lee B 2008 J. Appl. Phys. 103 07D113

    [11]

    Xu Q, Hartmann L, Schmidt H, Hochmuth H, Lorenz M, Spemann D, Grundmann M 2007 Phys. Rev. B 76 134417

    [12]

    Wang D F, Kim J M, Thuy V T T, Seo M S, Lee Y P 2011 J. Korean Phys. Soc. 58 1304

    [13]

    Hartmann L, Xu Q, Schmidt H, Hochmuth H, Lorenz M, Sturm C, Meinecke C, Grundmann M 2006 J. Phys. D 39 4920

    [14]

    Reuss F, Frank S, Kirchner C, Kling R, Gruber T, Waag A 2005 Appl. Phys. Lett. 87 112104

    [15]

    Liang W J, Yuhas B D, Yang P D 2009 Nano Lett. 9 892

    [16]

    Tian Y F, Yan S, Cao Q, Deng J X, Chen Y X, Liu G L, Mei L M, Qiang Y 2009 Phys. Rev. B 79 115209

    [17]

    Tian Y F, Antony J, Souza R, Yan S S, Mei L M, Qiang Y 2008 Appl. Phys. Lett. 92 192109

    [18]

    Jabeen M, Iqbal M A, Kumar R V, Ahmed M, Javed M T 2014 Chin. Phys. B 23 018504

    [19]

    Yu X X, Zhou Y, Liu J, Jin H B, Fang X Y, Cao M S 2015 Chin. Phys. B 24 127307

    [20]

    Akinaga H, Mizuguchi M, Ono K, Oshima M 2000 Appl. Phys. Lett. 76 2600

    [21]

    Shon Y, Yuldashev S U, Fan X J, Fu D J, Kwon Y H, Hong C Y, Kang T W 2001 Jpn. J. Appl. Phys. 40 3082

    [22]

    Viana E R, Ribeiro G M, Oliveira A G, Peres M L, Rubinger R M, Rubinger C P L 2012 Mater. Res. 15 530

  • [1] Wang Yue, Shao Bo-Huai, Chen Shuang-Long, Wang Chun-Jie, Gao Chun-Xiao. Effects of defects on electrical transport properties of anatase TiO2 polycrystalline under high pressure: AC impedance measurement. Acta Physica Sinica, 2023, 72(12): 126401. doi: 10.7498/aps.72.20230020
    [2] Nie Xiao-Lei, Yu Hao-Cheng, Zhu Wan-Ting, Sang Xia-Han, Wei Ping, Zhao Wen-Yu. Design, fabrication and performance evaluation of graphene/Bi0.5Sb1.5Te3 flexible thermoelectric films and in-plane heat dissipation devices. Acta Physica Sinica, 2022, 71(15): 157301. doi: 10.7498/aps.71.20220358
    [3] Wang Wei, Liu Wei, Xie Sen, Ge Hao-Ran, Ouyang Yu-Jie, Zhang Cheng, Hua Fu-Qiang, Zhang Min, Tang Xin-Feng. epitaxial growth, intrinsic point defects and electronic transport optimization of MnTe films. Acta Physica Sinica, 2022, 71(13): 137102. doi: 10.7498/aps.71.20212350
    [4] Wang Yue, Shao Bo-Huai, Chen Shuang-Long, Wang Chun-Jie, Gao Chun-Xiao. Grain and grain boundary behaviors and electrical transport properties of TiO2 nanowires under high pressure. Acta Physica Sinica, 2022, 71(9): 096101. doi: 10.7498/aps.71.20212276
    [5] He Bin, He Xiong, Liu Guo-Qiang, Zhu Can, Wang Jia-Fu, Sun Zhi-Gang. Memristive and magnetoresistance effects of SnSe2. Acta Physica Sinica, 2020, 69(11): 117301. doi: 10.7498/aps.69.20200160
    [6] Chen Dan, Shi Dan-Dan, Pan Gui-Jun. Correlation between the electrical transport performance and the communicability sequence entropy in complex networks. Acta Physica Sinica, 2019, 68(11): 118901. doi: 10.7498/aps.68.20190230
    [7] Wang Na, Ma Yang, Chen Chang-Song, Chen Jiang, San Hai-Sheng, Chen Ji-Ge, Cheng Zheng-Dong. Investigation on voltaic effect based on one-dimensional TiO2 nanotube array thin film. Acta Physica Sinica, 2018, 67(4): 047901. doi: 10.7498/aps.67.20171903
    [8] Chen Ya-Qi,  Xu Hua-Kai,  Tang Dong-Sheng,  Yu Fang,  Lei Le,  Ouyang Gang. Electrical transport properties and related mechanism of single SnO2 nanowire device. Acta Physica Sinica, 2018, 67(24): 246801. doi: 10.7498/aps.67.20181402
    [9] Yu Zhi-Qiang, Liu Min-Li, Lang Jian-Xun, Qian Kai, Zhang Chang-Hua. Resistive switching characteristics and resistive switching mechanism of Au/TiO2/FTO memristor. Acta Physica Sinica, 2018, 67(15): 157302. doi: 10.7498/aps.67.20180425
    [10] Wang De, Shen Rong, Liu Can-Can, Wei Shi-Qiang, Lu Kun-Quan. Evaporation enhancement effect of TiO2 nanoparticles on silicone oil in electrorheological fluid suspension. Acta Physica Sinica, 2015, 64(15): 154704. doi: 10.7498/aps.64.154704
    [11] Wang Jiang-Jing, Shao Rui-Wen, Deng Qing-Song, Zheng Kun. Study on electrical transport properties of strained Si nanowires by in situ transmission electron microscope. Acta Physica Sinica, 2014, 63(11): 117303. doi: 10.7498/aps.63.117303
    [12] Zhang Ming-Qi, Wang Yu-Hua, Dong Peng-Yu, Zhang Jia. Magnetic properties of Bi2Fe4O9 synthesized by electrospinning. Acta Physica Sinica, 2012, 61(23): 238102. doi: 10.7498/aps.61.238102
    [13] Hari Bala, Shi Lan, Jiang Lei, Guo Jin-Yu, Yuan Guang-Yu, Wang Li-Bo, Liu Zong-Rui. Preparation of lamina-shape TiO2 nanoarray electrode and its electron transport in dye-sensitized solar cells. Acta Physica Sinica, 2011, 60(8): 088101. doi: 10.7498/aps.60.088101
    [14] Wu Xue-Wei, Wu Da-Jian, Liu Xiao-Jun. Effects of B(N, F) doping on optical properties of TiO2 nanoparticles. Acta Physica Sinica, 2010, 59(7): 4788-4793. doi: 10.7498/aps.59.4788
    [15] Xiang Jun, Song Fu-Zhan, Shen Xiang-Qian, Chu Yan-Qiu. Preparation of one-dimensional Ni0.5Zn0.5Fe2O4/SiO2 composite nanostructures and their magnetic properties. Acta Physica Sinica, 2010, 59(7): 4794-4801. doi: 10.7498/aps.59.4794
    [16] Zhang Fei-Peng, Lu Qing-Mei, Zhang Jiu-Xing, Zhang Xin. Texture and electrical transport properties of Ba and Ag double substituted BaxAgyCa3-x-yCo4O9 oxide. Acta Physica Sinica, 2009, 58(4): 2697-2701. doi: 10.7498/aps.58.2697
    [17] Zhao Jian-Hua, Chen Bo, Wang De-Liang. Anharmonic phonon coupling and phonon confinement in nanocrystalline anatase TiO2. Acta Physica Sinica, 2008, 57(5): 3077-3084. doi: 10.7498/aps.57.3077
    [18] Hu Lin-Hua, Dai Song-Yuan, Wang Kong-Jia. Influence of microstructure of nanoporous TiO22 films on the perfor mance of dye-sensitized solar cells. Acta Physica Sinica, 2005, 54(4): 1914-1918. doi: 10.7498/aps.54.1914
    [19] KONG GHUN-YANG, WANG WAN-LU, LIAO KE-JUN, MA YONG, WANG SHU-XIA, FANG LIANG. THE MAGNETORESISTIVE EFFECT OF p-TYPE SEMICONDUCTING DIAMOND FILMS. Acta Physica Sinica, 2001, 50(8): 1616-1622. doi: 10.7498/aps.50.1616
    [20] ZHANG HONG-FEI, WANG LIANG-ZHU, ZHANG LI-DE, WU XI-JUN. THE DIELECTRIC BEHAVIOR IN NANO-STRUCTURED MATERIALS TiO2(RUTILE). Acta Physica Sinica, 1996, 45(6): 1046-1050. doi: 10.7498/aps.45.1046
Metrics
  • Abstract views:  4789
  • PDF Downloads:  177
  • Cited By: 0
Publishing process
  • Received Date:  07 December 2015
  • Accepted Date:  15 February 2016
  • Published Online:  05 May 2016

/

返回文章
返回