Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Room temperature gas sensing property and sensing mechanism of Sn-doped ZnO thin film

Xing Lan-Jun Chang Yong-Qin Shao Chang-Jing Wang Lin Long Yi

Citation:

Room temperature gas sensing property and sensing mechanism of Sn-doped ZnO thin film

Xing Lan-Jun, Chang Yong-Qin, Shao Chang-Jing, Wang Lin, Long Yi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Sn-doped ZnO and pure ZnO thin films are deposited on glass substrates with prepared electrode by the chemical vapor deposition method. The gas sensing performances of Sn-doped ZnO and pure ZnO thin films are investigated by our home-made system at room temperature, and the gas sensing test results reveal that Sn-doped ZnO thin film exhibits high gas response to ethanol and acetone, while no response is detected for pure ZnO to ethanol or acetone at room temperature. Sn-doped ZnO thin film also has high selectivity that the response to ethanol is higher than that to acetone in the same measurement conditions, and the response of Sn-doped ZnO thin film sample to ethanol is almost the third largest when the concentration is 320 ppm. The typical scanning electron microscopy images reveal that these two samples are tetrapod-shaped ZnO whiskers with diameters in a range of about 150-400 nm. X-ray diffraction results indicate that all the samples are of wurtzite structure. Neither trace of Sn, nor that of Sn alloy nor that of Sn oxide is detected in the Sn-doped ZnO film, while its diffraction peak shifts towards the left compared with that of pure ZnO sample, which suggests that Sn atoms exist in the form of interstitial atoms in the ZnO crystal. The energy dispersive spectrum shows that the Sn-doped ZnO thin film is composed of Zn and O elements, and no Sn signal is defected. Photoluminescence spectra reveal that both Sn-doped ZnO and pure ZnO films have ultraviolet light emission peaks and green emission peaks, while the intensities of the defect emissions are significantly enhanced by doping of Sn. In addition, no gas response to ethanol is detected after Sn-doped ZnO thin film has been annealed in the air, which indicates that the room temperature gas sensitivity of the Sn-doped ZnO thin film may be related to its high defect concentration. The working mechanism of Sn-doped ZnO thin film is explained by a free electron random scattering model. As is well known, ZnO semiconductor gas-sensor is of surface-controlled type. In this work, upon exposure to ethanol vapor, the physical absorbed ethanol molecules acting as scattering centers can reduce the mean free path of the electrons in the surface of the film, changing the mean free time n, which would increase the resistance of Sn-doped ZnO thin film at room temperature. This work provides a simple method of fabricating the highly sensitive ethanol gas sensor operating at room temperature, which has great potential applications in gas sensor field.
      Corresponding author: Chang Yong-Qin, chang@ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50502005, 11175014) and Program for New Century Excellent Talents in University, China (Grant No. NCET-07-0065).
    [1]

    Liu J, Jia T, Zhou K, Feng D, Zhang S, Zhang H, Jia X, Sun Z, Qiu J 2014 Opt. Express 22 32361

    [2]

    Chen D D, Xu F, Cao R N, Jiang Z M, Ma Z Q, Yang J, Du H W, Hong F 2015 Acta Phys. Sin. 64 047104 (in Chinese) [陈丹丹, 徐飞, 曹汝楠, 蒋最敏, 马忠权, 杨洁, 杜汇伟, 洪峰 2015 物理学报 64 047104]

    [3]

    Naik K K, Khare R, Chakravarty D, More M A, Thapa R, Late D J, Rout C S 2014 Appl. Phys. Lett. 105 233101

    [4]

    Laurenti M, Canavese G, Sacco A, Fontana M, Bejtka K, Castellino M, Pirri C F, Cauda V 2015 Adv. Mater. 27 4218

    [5]

    Qi J J, Xu M X, Hu X F, Zhang Y 2015 Acta Phys. Sin. 64 172901 (in Chinese) [齐俊杰, 徐旻轩, 胡晓峰, 张跃 2015 物理学报 64 172901]

    [6]

    Xing L L, Hu Y F, Wang P L, Zhao Y Y, Nie Y X, Deng P, Xue X Y 2014 Appl. Phys. Lett. 104 013109

    [7]

    Kashif M, Ali M E, Ali S M U, Hashim U 2013 Ceram. Int. 39 6461

    [8]

    Bo X Q, Liu C B, Li H Y, Liu L, Guo X, Liu Z, Liu L L, Su C 2014 Acta Phys. Sin. 63 176803 (in Chinese) [薄小庆, 刘唱白, 李海英, 刘丽, 郭欣, 刘震, 刘丽丽, 苏畅 2014 物理学报 63 176803]

    [9]

    Xuan T M, Yin G L, Ge M Y, Lin L, He D N 2015 Mater. Rew. 29 132 (in Chinese) [宣天美, 尹桂林, 葛美英, 林琳, 何丹农 2015 材料导报 29 132]

    [10]

    Park S, Hong T, Jung J, Lee C 2014 Curr. Appl. Phys. 14 1171

    [11]

    Zhai J L, Wang L L, Wang D J, Lin Y H, He D Q, Xie T F 2012 Sens. Actuators B: Chem. 161 292

    [12]

    Gong J, Li Y H, Chai X S, Hu Z S, Deng Y L 2010 J. Phys. Chem. C 114 1293

    [13]

    Wang P L, Fu Y M, Yu B W, Zhao Y Y, Xing L L, Xue X Y 2015 J. Mater. Chem. A 3 3529

    [14]

    Fan S W, Srivastava A K, Dravid V P 2010 Sens. Actuators B: Chem. 144 159

    [15]

    Park S, An S, Mun Y, Lee C 2013 ACS Appl. Mater. Interf. 5 4285

    [16]

    Yu M R, Suyambrakasam G, Wu R J, Chavali M 2012 Mater. Res. Bull. 47 1713

    [17]

    Zhou X Y, Xue Q Z, Chen H J, Liu C Z 2010 Physica E 42 2021

    [18]

    Yu M R, Wu R J, Chavali M 2011 Sens. Actuators B: Chem. 153 321

    [19]

    Shao C J, Chang Y Q, Long Y 2014 Sens. Actuators B: Chem. 204 666

    [20]

    Chung F C, Zhu Z, Luo P Y, Wu R J, Li W 2014 Sens. Actuators B: Chem. 199 314

    [21]

    Lin Y J, Deng P, Nie Y X, Hu Y F, Xing L L, Zhang Y, Xue Xin Y 2014 Nanoscale 6 4604

    [22]

    Gui Y H, Zhang Y, Wang H X, Xu J Q, Li C 2008 Electron. Compon. Mater. 27 13 (in Chinese) [桂阳海, 张勇, 王焕新, 徐甲强, 李超 2008 电子元件与材料 27 13]

    [23]

    Hu J, Deng X, Sang S B, Li P W, Li G, Zhang W D 2014 Acta Phys. Sin. 63 207102 (in Chinese) [胡杰, 邓霄, 桑胜波, 李朋伟, 李刚, 张文栋 2014 物理学报 63 207102]

    [24]

    Fujii M, Iwanaga H, Ichihara M, Takeuchi S 1993 J. Cryst. Growth 128 1095

    [25]

    Dai Y, Zhang Y, Wang Z L 2003 Solid State Commun. 126 629

    [26]

    Zeng H B, Duan G T, Li Y, Yang S K, Xu X X, Cai W P 2010 Adv. Funct. Mater. 20 561

    [27]

    Chen H S, Qi J J, Huang Y H 2007 Acta Phys. -Chim. Sin. 23 55 (in Chinese) [陈红升, 齐俊杰, 黄运华 2007 物理化学学报 23 55]

    [28]

    Zhao Y, Wang Q 2012 Sensitive Materials and Sensing Devices (Beijing: Mechanical industry press) p267-268 (in Chinese) [赵勇, 王琦 2012 传感器敏感材 料与器件(北京: 机械工业出版社)第267-268页]

    [29]

    Jia X H, Fan H Q 2010 Mater. Lett. 64 1574

    [30]

    Gong H, Hu J Q, Wang J H, Ong C H, Zhu F R 2006 Sens. Actuators B: Chem. 115 247

    [31]

    Tobin R G 2002 Surf. Sci. 502 374

  • [1]

    Liu J, Jia T, Zhou K, Feng D, Zhang S, Zhang H, Jia X, Sun Z, Qiu J 2014 Opt. Express 22 32361

    [2]

    Chen D D, Xu F, Cao R N, Jiang Z M, Ma Z Q, Yang J, Du H W, Hong F 2015 Acta Phys. Sin. 64 047104 (in Chinese) [陈丹丹, 徐飞, 曹汝楠, 蒋最敏, 马忠权, 杨洁, 杜汇伟, 洪峰 2015 物理学报 64 047104]

    [3]

    Naik K K, Khare R, Chakravarty D, More M A, Thapa R, Late D J, Rout C S 2014 Appl. Phys. Lett. 105 233101

    [4]

    Laurenti M, Canavese G, Sacco A, Fontana M, Bejtka K, Castellino M, Pirri C F, Cauda V 2015 Adv. Mater. 27 4218

    [5]

    Qi J J, Xu M X, Hu X F, Zhang Y 2015 Acta Phys. Sin. 64 172901 (in Chinese) [齐俊杰, 徐旻轩, 胡晓峰, 张跃 2015 物理学报 64 172901]

    [6]

    Xing L L, Hu Y F, Wang P L, Zhao Y Y, Nie Y X, Deng P, Xue X Y 2014 Appl. Phys. Lett. 104 013109

    [7]

    Kashif M, Ali M E, Ali S M U, Hashim U 2013 Ceram. Int. 39 6461

    [8]

    Bo X Q, Liu C B, Li H Y, Liu L, Guo X, Liu Z, Liu L L, Su C 2014 Acta Phys. Sin. 63 176803 (in Chinese) [薄小庆, 刘唱白, 李海英, 刘丽, 郭欣, 刘震, 刘丽丽, 苏畅 2014 物理学报 63 176803]

    [9]

    Xuan T M, Yin G L, Ge M Y, Lin L, He D N 2015 Mater. Rew. 29 132 (in Chinese) [宣天美, 尹桂林, 葛美英, 林琳, 何丹农 2015 材料导报 29 132]

    [10]

    Park S, Hong T, Jung J, Lee C 2014 Curr. Appl. Phys. 14 1171

    [11]

    Zhai J L, Wang L L, Wang D J, Lin Y H, He D Q, Xie T F 2012 Sens. Actuators B: Chem. 161 292

    [12]

    Gong J, Li Y H, Chai X S, Hu Z S, Deng Y L 2010 J. Phys. Chem. C 114 1293

    [13]

    Wang P L, Fu Y M, Yu B W, Zhao Y Y, Xing L L, Xue X Y 2015 J. Mater. Chem. A 3 3529

    [14]

    Fan S W, Srivastava A K, Dravid V P 2010 Sens. Actuators B: Chem. 144 159

    [15]

    Park S, An S, Mun Y, Lee C 2013 ACS Appl. Mater. Interf. 5 4285

    [16]

    Yu M R, Suyambrakasam G, Wu R J, Chavali M 2012 Mater. Res. Bull. 47 1713

    [17]

    Zhou X Y, Xue Q Z, Chen H J, Liu C Z 2010 Physica E 42 2021

    [18]

    Yu M R, Wu R J, Chavali M 2011 Sens. Actuators B: Chem. 153 321

    [19]

    Shao C J, Chang Y Q, Long Y 2014 Sens. Actuators B: Chem. 204 666

    [20]

    Chung F C, Zhu Z, Luo P Y, Wu R J, Li W 2014 Sens. Actuators B: Chem. 199 314

    [21]

    Lin Y J, Deng P, Nie Y X, Hu Y F, Xing L L, Zhang Y, Xue Xin Y 2014 Nanoscale 6 4604

    [22]

    Gui Y H, Zhang Y, Wang H X, Xu J Q, Li C 2008 Electron. Compon. Mater. 27 13 (in Chinese) [桂阳海, 张勇, 王焕新, 徐甲强, 李超 2008 电子元件与材料 27 13]

    [23]

    Hu J, Deng X, Sang S B, Li P W, Li G, Zhang W D 2014 Acta Phys. Sin. 63 207102 (in Chinese) [胡杰, 邓霄, 桑胜波, 李朋伟, 李刚, 张文栋 2014 物理学报 63 207102]

    [24]

    Fujii M, Iwanaga H, Ichihara M, Takeuchi S 1993 J. Cryst. Growth 128 1095

    [25]

    Dai Y, Zhang Y, Wang Z L 2003 Solid State Commun. 126 629

    [26]

    Zeng H B, Duan G T, Li Y, Yang S K, Xu X X, Cai W P 2010 Adv. Funct. Mater. 20 561

    [27]

    Chen H S, Qi J J, Huang Y H 2007 Acta Phys. -Chim. Sin. 23 55 (in Chinese) [陈红升, 齐俊杰, 黄运华 2007 物理化学学报 23 55]

    [28]

    Zhao Y, Wang Q 2012 Sensitive Materials and Sensing Devices (Beijing: Mechanical industry press) p267-268 (in Chinese) [赵勇, 王琦 2012 传感器敏感材 料与器件(北京: 机械工业出版社)第267-268页]

    [29]

    Jia X H, Fan H Q 2010 Mater. Lett. 64 1574

    [30]

    Gong H, Hu J Q, Wang J H, Ong C H, Zhu F R 2006 Sens. Actuators B: Chem. 115 247

    [31]

    Tobin R G 2002 Surf. Sci. 502 374

  • [1] Fu Qun-Dong, Wang Xiao-Wei, Zhou Xiu-Xian, Zhu Chao, Liu Zheng. Synthesis of two-dimensional Bi2O2Se on silicon substrate by chemical vapor deposition and its photoelectric detection application. Acta Physica Sinica, 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [2] Cao Zhen, Hao Da-Peng, Tang Gang, Xun Zhi-Peng, Xia Hui. Influence of cluster shaped defects on fracture process of fiber bundle. Acta Physica Sinica, 2021, 70(20): 204602. doi: 10.7498/aps.70.20210310
    [3] Wang Shuo, Wang Wen-Hui, Lü Jun-Peng, Ni Zhen-Hua. Chemical vapor deposition growth of large-areas two dimensional materials: Approaches and mechanisms. Acta Physica Sinica, 2021, 70(2): 026802. doi: 10.7498/aps.70.20201398
    [4] Wang Xiao-Yu, Bi Wei-Hong, Cui Yong-Zhao, Fu Guang-Wei, Fu Xing-Hu, Jin Wa, Wang Ying. Synthesis of photonic crystal fiber based on graphene directly grown on air-hole by chemical vapor deposition. Acta Physica Sinica, 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [5] Feng Qiu-Ju, Shi Bo, Li Yun-Zheng, Wang De-Yu, Gao Chong, Dong Zeng-Jie, Xie Jin-Zhu, Liang Hong-Wei. Fabrication and properties of non-balance electric bridge gas sensor based on a single Sb doped ZnO microwire. Acta Physica Sinica, 2020, 69(3): 038102. doi: 10.7498/aps.69.20191530
    [6] Zhang Xiao-Bo, Qing Fang-Zhu, Li Xue-Song. Clean transfer of chemical vapor deposition graphene film. Acta Physica Sinica, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [7] Feng Qiu-Ju, Li Fang, Li Tong-Tong, Li Yun-Zheng, Shi Bo, Li Meng-Ke, Liang Hong-Wei. Growth and characterization of grid-like β-Ga2O3 nanowires by electric field assisted chemical vapor deposition method. Acta Physica Sinica, 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [8] Dong Yan-Fang, He Da-Wei, Wang Yong-Sheng, Xu Hai-Teng, Gong Zhe. Synthesis of large size monolayer MoS2 with a simple chemical vapor deposition. Acta Physica Sinica, 2016, 65(12): 128101. doi: 10.7498/aps.65.128101
    [9] Wang Bin, Feng Ya-Hui, Wang Qiu-Shi, Zhang Wei, Zhang Li-Na, Ma Jin-Wen, Zhang Hao-Ran, Yu Guang-Hui, Wang Gui-Qiang. Hydrogen etching of chemical vapor deposition-grown graphene domains. Acta Physica Sinica, 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [10] Wang Lang, Feng Wei, Yang Lian-Qiao, Zhang Jian-Hua. The pre-treatment of copper for graphene synthesis. Acta Physica Sinica, 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [11] Feng Qiu-Ju, Xu Rui-Zhuo, Guo Hui-Ying, Xu Kun, Li Rong, Tao Peng-Cheng, Liang Hong-Wei, Liu Jia-Yuan, Mei Yi-Ying. Influences of the substrate position on the morphology and characterization of phosphorus doped ZnO nanomaterial. Acta Physica Sinica, 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
    [12] Wang Wen-Rong, Zhou Yu-Xiu, Li Tie, Wang Yue-Lin, Xie Xiao-Ming. Research on synthesis of high-quality and large-scale graphene films by chemical vapor deposition. Acta Physica Sinica, 2012, 61(3): 038702. doi: 10.7498/aps.61.038702
    [13] Liu Bai-Nian, Ma Ying, Zhou Yi-Chun. First-principles study of defect properties in tetragonal BaTiO3. Acta Physica Sinica, 2010, 59(5): 3377-3383. doi: 10.7498/aps.59.3377
    [14] Han Dao-Li, Zhao Yuan-Li, Zhao Hai-Bo, Song Tian-Fu, Liang Er-Jun. Growth of well-aligned carbon nanotubes arrays by chemical vapor deposition. Acta Physica Sinica, 2007, 56(10): 5958-5964. doi: 10.7498/aps.56.5958
    [15] Guo Ping-Sheng, Chen Ting, Cao Zhang-Yi, Zhang Zhe-Juan, Chen Yi-Wei, Sun Zhuo. Low temperature growth of carbon nanotubes by chemical vapor deposition for field emission cathodes. Acta Physica Sinica, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [16] Zeng Xiang-Bo, Liao Xian-Bo, Wang Bo, Diao Hong-Wei, Dai Song-Tao, Xiang Xian-Bi, Chang Xiu-Lan, Xu Yan-Yue, Hu Zhi-Hua, Hao Hui-Ying, Kong Guang-Lin. Boron-doped silicon nanowires grown by plasmaenhanced chemical vapor deposition. Acta Physica Sinica, 2004, 53(12): 4410-4413. doi: 10.7498/aps.53.4410
    [17] Yu Wei, Liu Li-Hui, Hou Hai-Hong, Ding Xue-Cheng, Han Li, Fu Guang-Sheng. Silicon nitride films prepared by helicon wave plasam-enhanced chemical vapour deposition. Acta Physica Sinica, 2003, 52(3): 687-691. doi: 10.7498/aps.52.687
    [18] Yan Xiao-Qin, Liu Zu-Qin, Tang Dong-Sheng, Ci Li-Jie, Liu Dong-Fang, Zhou Zhen-Ping, Liang Ying-Xin, Yuan Hua-Jun, Zhou Wei-Ya, Wang Gang. Effects of substrates on silicon oxide nanowires growth by thermal chemical vapor deposition. Acta Physica Sinica, 2003, 52(2): 454-458. doi: 10.7498/aps.52.454
    [19] Yan Gui-Shen, Li He-Jun, Hao Zhi-Biao. . Acta Physica Sinica, 2002, 51(2): 326-331. doi: 10.7498/aps.51.326
    [20] CHEN XIAO-HUA, WU GUO-TAO, DENG FU-MING, WANG JIAN-XIONG, YANG HANG-SHENG, WANG MIAO, LU XIAO-NAN, PENG JING-CUI, LI WEN-ZHU. GROWING CARBON BUCKONIONS BY RADIO FREQUENCY PLASMA-ENHANCED CHEMICAL VAPOR DEPOSITION. Acta Physica Sinica, 2001, 50(7): 1264-1267. doi: 10.7498/aps.50.1264
Metrics
  • Abstract views:  5495
  • PDF Downloads:  268
  • Cited By: 0
Publishing process
  • Received Date:  01 December 2015
  • Accepted Date:  12 February 2016
  • Published Online:  05 May 2016

/

返回文章
返回