Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hydrogen etching of chemical vapor deposition-grown graphene domains

Wang Bin Feng Ya-Hui Wang Qiu-Shi Zhang Wei Zhang Li-Na Ma Jin-Wen Zhang Hao-Ran Yu Guang-Hui Wang Gui-Qiang

Citation:

Hydrogen etching of chemical vapor deposition-grown graphene domains

Wang Bin, Feng Ya-Hui, Wang Qiu-Shi, Zhang Wei, Zhang Li-Na, Ma Jin-Wen, Zhang Hao-Ran, Yu Guang-Hui, Wang Gui-Qiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper we analyze the reason of the etching trenches in chemical vapor deposition (CVD) graphene domain and study the influence factor in the distribution and morphology of wrinkles. Graphene is synthesized on Cu substrate. The Cu substrate is annealed at 1050℃ for 60 min with 1000 sccm Ar and 200 sccm H2. After annealing, 500 sccm Ar, 20 sccm H2, and 1 sccm dilute CH4 (mixed with Ar) are introduced into the CVD system for graphene growth. Hydrogen etchings of graphene are conducted with flows of 500 sccm Ar and 200 sccm H2 at atmospheric pressure, and etching are performed at 950 and 1050℃. The striated and reticular etching trenches are observed after etching via optical microscope and scanning electron microscope. Every graphene domain is divided into island structures by these etching trenches. However, the edge of graphene domain is not etched and the size of domain is not changed. Electron backscatter diffraction (EBSD) is conducted to analyze the different morphologies of etching trenches. According to the EBSD analysis, the etching trench is closely associated with the Cu crystal orientation. Different Cu planes result in differences in mode, shape, and density of the etching trench. We conduct a verification experiment to judge whether the etching trenches are caused by the gaps between graphene and Cu substrate or by the hydrogenation of wrinkles. The graphene domains grown on Cu substrate with the same growth condition are etched immediately after growth without cooling process. We select graphene which grows across the Cu grain boundary, via optical microscope. A small number of regular hexagons are observed in graphene surface and the region of Cu boundary, but no etching trench is found. As the graphene growing across Cu boundary is the suspending graphene and there is no etching trench, we consider that the gap between graphene and Cu species is not a significant factor of forming etching trench. For comparison, the etching trenches are observed in the graphene domains with cooling process. Thus, the trench formation is bound up with the cooling process after growth, which can lead to the wrinkle formation on the graphene surface, giving rise to a large thermal expansion coefficient difference between the graphene and Cu species. As a major type of structural imperfection, wrinkles can show that enhanced reactivity is due to hydrogenation because of high local curvature. So we consider that the trench formation is caused by the hydrogenation of wrinkles. Then the as-grown graphene domains are transferred to SiO2 substrate and atomic force microscope (AFM) is employed to measure the surface appearance of graphene. The AMF image shows lots of wrinkles in the graphene surface. The morphology and density of wrinkles are similar to those of the etching trenches extremely. Thus, the AFM testing result provides another evidence to prove that the etching trenches are related to the hydrogenation of wrinkles. From the above we can draw some conclusions. Numerous trenches are observed in the graphene domains after etching, and the trench patterns are closely associated with the Cu crystal orientation. A different Cu crystal orientation leads to variations in mode, shape, and density of the etching trench. We prove that the etching trenches are caused by the hydrogenation on wrinkles formed in the cooling down process instead of the gap between Cu and graphene. This hydrogen etching technology is a convenient way to detect the distribution and morphology of wrinkles. Furthermore, it provides a reference for improving the quality of CVD graphene.
      Corresponding author: Wang Gui-Qiang, wgqiang@bhu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61136005).
    [1]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [3]

    Schwierz F 2010 Nature Nanotech. 5 487

    [4]

    Yin W H, Wang Y B, Han Q, Yang X H 2015 Chin. Phys. B 24 068101

    [5]

    Feng W, Zhang R, Cao J C 2015 Acta Phys. Sin. 64 229501 (in Chinese) [冯伟, 张戎, 曹俊诚 2015 物理学报 64 229501]

    [6]

    Yang X X, Sun J D, Qin H, L L, Su L N, Yan B, Li X X, Zhang Z P, Fang J Y 2015 Chin. Phys. B 24 047206

    [7]

    Zhao T, Zhong R B, Hu M, Chen X X, Zhang P, Gong S, Liu S G 2015 Chin. Phys. B 24 094102

    [8]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312

    [9]

    Li X S, Magnuson C W, Venugopal A, An J H, Suk J W, Han B Y, Borysiak M, Cai W W, Velamakanni A, Zhu Y W, Fu L F, Vogel E M, Voelkl E, Colombo L, Ruoff R S 2010 Nano Lett. 10 4328

    [10]

    Usachov D, Dobrotvorskii A, Varykhalov A, Rader O, Gudat W, Shikin A, Adamchuk V K 2008 Phys. Rev. B 78 085403

    [11]

    Wang B, Zhang Y H, Chen Z Y, Wu Y W, Jin Z, Liu X Y, Hu L Z, Yu G H 2013 Mater. Lett. 93 165

    [12]

    Wu Y W, Yu G H, Wang H M, Wang B, Chen Z Y, Zhang Y H, Wang B, Shi X P, Jin Z, Liu X Y 2012 Carbon 50 5226

    [13]

    Loginova E, Bartelt N C, Feibelman P J, McCarty K F 2008 New J. Phys. 10 093026

    [14]

    Oznuluer T, Pince E, Polat E O, Balci O, Salihoglu O, Kocabas C 2011 Appl. Phys. Lett. 98 183101

    [15]

    Gao L B, Ren W C, Xu H L, Jin L, Wang Z X, Ma T, Ma L P, Zhang Z Y, Fu Q, Peng L M, Bao X H, Cheng H M 2012 Nature Commun. 3 699

    [16]

    Zhao Y, Wang G, Yang H C, An T L, Chen M J, Yu F, Tao L, Yang J K, Wei T B, Duan R F, Sun L F 2014 Chin. Phys. B 23 096802

    [17]

    Zhang Y H, Chen Z Y, Wang B, Wu Y W, Jin Z, Liu X Y, Yu G H 2013 Mater. Lett. 96 149

    [18]

    Li X S, Magnuson C W, Venugopal A, Tromp R M, Hannon J B, Vogel E M, Colombo L, Ruoff R S 2011 J.Am.Chem.Soc. 133 2816

    [19]

    Zhu W J, Low T, Perebeinos V, Bol A A, Zhu Y, Yan H G, Jet T, Avouris P 2012 Nano Lett. 12 3431

    [20]

    Wang L, Feng W, Yang L Q, Zhang J H 2014 Acta Phys. Sin. 63 176801 (in Chinese) [王浪, 冯伟, 杨连乔, 张建华 2014 物理学报 63 176801]

    [21]

    Wang B, Zhang Y H, Zhang H R, Chen Z Y, Xie X M, Sui Y P, Li X L, Yu G H, Hu L Z, Jin Z, Liu X Y 2014 Carbon 70 75

    [22]

    Zhang Y, Li Z, Kim P, Zhang L Y, Zhou C W 2012 Acs Nano 6 126

  • [1]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [3]

    Schwierz F 2010 Nature Nanotech. 5 487

    [4]

    Yin W H, Wang Y B, Han Q, Yang X H 2015 Chin. Phys. B 24 068101

    [5]

    Feng W, Zhang R, Cao J C 2015 Acta Phys. Sin. 64 229501 (in Chinese) [冯伟, 张戎, 曹俊诚 2015 物理学报 64 229501]

    [6]

    Yang X X, Sun J D, Qin H, L L, Su L N, Yan B, Li X X, Zhang Z P, Fang J Y 2015 Chin. Phys. B 24 047206

    [7]

    Zhao T, Zhong R B, Hu M, Chen X X, Zhang P, Gong S, Liu S G 2015 Chin. Phys. B 24 094102

    [8]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312

    [9]

    Li X S, Magnuson C W, Venugopal A, An J H, Suk J W, Han B Y, Borysiak M, Cai W W, Velamakanni A, Zhu Y W, Fu L F, Vogel E M, Voelkl E, Colombo L, Ruoff R S 2010 Nano Lett. 10 4328

    [10]

    Usachov D, Dobrotvorskii A, Varykhalov A, Rader O, Gudat W, Shikin A, Adamchuk V K 2008 Phys. Rev. B 78 085403

    [11]

    Wang B, Zhang Y H, Chen Z Y, Wu Y W, Jin Z, Liu X Y, Hu L Z, Yu G H 2013 Mater. Lett. 93 165

    [12]

    Wu Y W, Yu G H, Wang H M, Wang B, Chen Z Y, Zhang Y H, Wang B, Shi X P, Jin Z, Liu X Y 2012 Carbon 50 5226

    [13]

    Loginova E, Bartelt N C, Feibelman P J, McCarty K F 2008 New J. Phys. 10 093026

    [14]

    Oznuluer T, Pince E, Polat E O, Balci O, Salihoglu O, Kocabas C 2011 Appl. Phys. Lett. 98 183101

    [15]

    Gao L B, Ren W C, Xu H L, Jin L, Wang Z X, Ma T, Ma L P, Zhang Z Y, Fu Q, Peng L M, Bao X H, Cheng H M 2012 Nature Commun. 3 699

    [16]

    Zhao Y, Wang G, Yang H C, An T L, Chen M J, Yu F, Tao L, Yang J K, Wei T B, Duan R F, Sun L F 2014 Chin. Phys. B 23 096802

    [17]

    Zhang Y H, Chen Z Y, Wang B, Wu Y W, Jin Z, Liu X Y, Yu G H 2013 Mater. Lett. 96 149

    [18]

    Li X S, Magnuson C W, Venugopal A, Tromp R M, Hannon J B, Vogel E M, Colombo L, Ruoff R S 2011 J.Am.Chem.Soc. 133 2816

    [19]

    Zhu W J, Low T, Perebeinos V, Bol A A, Zhu Y, Yan H G, Jet T, Avouris P 2012 Nano Lett. 12 3431

    [20]

    Wang L, Feng W, Yang L Q, Zhang J H 2014 Acta Phys. Sin. 63 176801 (in Chinese) [王浪, 冯伟, 杨连乔, 张建华 2014 物理学报 63 176801]

    [21]

    Wang B, Zhang Y H, Zhang H R, Chen Z Y, Xie X M, Sui Y P, Li X L, Yu G H, Hu L Z, Jin Z, Liu X Y 2014 Carbon 70 75

    [22]

    Zhang Y, Li Z, Kim P, Zhang L Y, Zhou C W 2012 Acs Nano 6 126

  • [1] Ding Ye-Zhang, Ye Yin, Li Duo-Sheng, Xu Feng, Lang Wen-Chang, Liu Jun-Hong, Wen Xin. Molecular dynamics simulation of graphene deposition and growth on WC-Co cemented carbides. Acta Physica Sinica, 2023, 72(6): 068703. doi: 10.7498/aps.72.20221332
    [2] Chen Shan-Deng, Bai Qing-Shun, Dou Yu-Hao, Guo Wan-Min, Wang Hong-Fei, Du Yun-Long. Simulation research on nucleation mechanism of graphene deposition assisted by diamond grain boundary. Acta Physica Sinica, 2022, 71(8): 086103. doi: 10.7498/aps.71.20211981
    [3] Zhang Hai-Yan, Xu Xin-Yu, Ma Xue-Fen, Zhu Qi, Peng Li. Mask-RCNN recognition method of composite fold shape in ultrasound images. Acta Physica Sinica, 2022, 71(7): 074302. doi: 10.7498/aps.71.20212009
    [4] Xu Xiang, Zhang Ying, Yan Qing, Liu Jing-Jing, Wang Jun, Xu Xin-Long, Hua Deng-Xin. Photochemical properties of rhenium disulfide/graphene heterojunctions with different stacking structures. Acta Physica Sinica, 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [5] Zhou Hai-Tao, Xiong Xi-Ya, Luo Fei, Luo Bing-Wei, Liu Da-Bo, Shen Cheng-Min. Graphene enforced copper matrix composites fabricated by in-situ deposition technique. Acta Physica Sinica, 2021, 70(8): 086201. doi: 10.7498/aps.70.20201943
    [6] Bai Qing-Shun, Dou Yu-Hao, He Xin, Zhang Ai-Min, Guo Yong-Bo. Deposition and growth mechanism of graphene on copper crystal surface based on molecular dynamics simulation. Acta Physica Sinica, 2020, 69(22): 226102. doi: 10.7498/aps.69.20200781
    [7] Xu Hong, Yuan Zheng-Yi, Huang Tong-Fei, Wang Xiao, Chen Zheng-Xian, Wei Jin, Zhang Xiang, Huang Yuan. Inspiration of wrinkles in layered material for the mechanism study of several geological activities. Acta Physica Sinica, 2020, 69(2): 026101. doi: 10.7498/aps.69.20190122
    [8] Wang Xiao-Yu, Bi Wei-Hong, Cui Yong-Zhao, Fu Guang-Wei, Fu Xing-Hu, Jin Wa, Wang Ying. Synthesis of photonic crystal fiber based on graphene directly grown on air-hole by chemical vapor deposition. Acta Physica Sinica, 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [9] Zhang Xiao-Bo, Qing Fang-Zhu, Li Xue-Song. Clean transfer of chemical vapor deposition graphene film. Acta Physica Sinica, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [10] Gu Ji-Wei, Wang Jin-Cheng, Wang Zhi-Jun, Li Jun-Jie, Guo Can, Tang Sai. Phase-field crystal modelling the nucleation processes of graphene structures on different substrates. Acta Physica Sinica, 2017, 66(21): 216101. doi: 10.7498/aps.66.216101
    [11] Li Hao, Fu Zhi-Bing, Wang Hong-Bin, Yi Yong, Huang Wei, Zhang Ji-Cheng. Preperetions of bi-layer and multi-layer graphene on copper substrates by atmospheric pressure chemical vapor deposition and their mechanisms. Acta Physica Sinica, 2017, 66(5): 058101. doi: 10.7498/aps.66.058101
    [12] Yang Hui-Hui, Gao Feng, Dai Ming-Jin, Hu Ping-An. Research progress of direct synthesis of graphene on dielectric layer. Acta Physica Sinica, 2017, 66(21): 216804. doi: 10.7498/aps.66.216804
    [13] Qin Ye-Hong, Tang Chao, Zhang Chun-Xiao, Meng Li-Jun, Zhong Jian-Xin. Molecular dynamics study of ripples in graphene monolayer on silicon surface. Acta Physica Sinica, 2015, 64(1): 016804. doi: 10.7498/aps.64.016804
    [14] Gong Zhi-Na, Yun Feng, Ding Wen, Zhang Ye, Guo Mao-Feng, Liu Shuo, Huang Ya-Ping, Liu Hao, Wang Shuai, Feng Lun-Gang, Wang Jiang-Teng. Increase in light extraction efficiency of vertical light emitting diodes by a photo-electro-chemical etching method. Acta Physica Sinica, 2015, 64(1): 018501. doi: 10.7498/aps.64.018501
    [15] Han Lin-Zhi, Zhao Zhan-Xia, Ma Zhong-Quan. Process parameters of large single crystal graphene prepared by chemical vapor deposition. Acta Physica Sinica, 2014, 63(24): 248103. doi: 10.7498/aps.63.248103
    [16] Wang Lang, Feng Wei, Yang Lian-Qiao, Zhang Jian-Hua. The pre-treatment of copper for graphene synthesis. Acta Physica Sinica, 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [17] Wang Jian-Wei, Song Yi-Xu, Ren Tian-Ling, Li Jin-Chun, Chu Guo-Liang. Molecular dynamics simulation of Lag effect in fluorine plasma etching Si. Acta Physica Sinica, 2013, 62(24): 245202. doi: 10.7498/aps.62.245202
    [18] Zheng Shu-Lin, Song Yi-Xu, Sun Xiao-Min. A three-dimensional surface evolution algorithm based on cellular model for etching process. Acta Physica Sinica, 2013, 62(10): 108201. doi: 10.7498/aps.62.108201
    [19] Wu Jun, Ma Zhi-Bin, Shen Wu-Lin, Yan Lei, Pan Xin, Wang Jian-Hua. Influence of nitrogen in diamond films on plasma etching. Acta Physica Sinica, 2013, 62(7): 075202. doi: 10.7498/aps.62.075202
    [20] Wang Wen-Rong, Zhou Yu-Xiu, Li Tie, Wang Yue-Lin, Xie Xiao-Ming. Research on synthesis of high-quality and large-scale graphene films by chemical vapor deposition. Acta Physica Sinica, 2012, 61(3): 038702. doi: 10.7498/aps.61.038702
Metrics
  • Abstract views:  6760
  • PDF Downloads:  381
  • Cited By: 0
Publishing process
  • Received Date:  24 November 2015
  • Accepted Date:  30 January 2016
  • Published Online:  05 May 2016

/

返回文章
返回