Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principle study of the optical absorption spectra of chalcogen on D-A and D--A copolymers

Li Jin Wang Hai-Yan Li You Zhang Qiu-Yue Jia Yu

Citation:

First-principle study of the optical absorption spectra of chalcogen on D-A and D--A copolymers

Li Jin, Wang Hai-Yan, Li You, Zhang Qiu-Yue, Jia Yu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • D-A type copolymer as an organic polymer solar cell electronic material in recent years has attracted wide attention. In order to improve the efficiency of energy conversion, many active layer materials, especially the donor materials, have been designed and synthesized. By inducing the different donor and acceptor units, the absorption spectrum can better match with the solar spectrum and the carrier mobility can increase. In this paper, by using the density functional theory method, we investigate the electronic structures and optical absorption spectra of D-A and D--A copolymers. Benzodithiophene (BDT) as the electron donor unit, and dibenzothiophene (BT) as the electron acceptor unit are used to simulate D-A (PBDT-BX, X = O, S, Se, Te) copolymer systems; and D--A (PBDT-DTBX, X = O, S, Se, Te) structures are constructed with thiophene ring as a bridge between D and A. Firstly, our calculation results indicate that when X is replaced separately by elements O, S, Se and Te in D-A copolymers, the LUMO levels move close to the Fermi level, while the changes of the HOMO energy levels are relatively small, resulting in the band gap decreasing gradually. Then, the analysis of the density of states (DOS) shows that the contribution of LUMO comes from the BT unit and HOMO from the BDT unit. Also the difference in charge density shows that the thiophene ring enhances the charge transfer between BT and BDT. Besides, the studies of the optical absorption spectrum reveal that there appear two strong absorption peaks with the increase of atomic number of X, of which one is at about 4.0 eV and has no obvious change, and the other increases intensively and is red-shifted. Moreover, compared with the D-A structure, the D--A structure has the band gap that will decrease obviously and has a lowest value when X is Te. The optical absorption peak also increases significantly as the atomic number of oxygen group elements increases and peak position is red-shifted. The range of optical absorption peak is mainly from 703.9 to 519.4 nm. According to the absorption spectrum and DOS the optical absorption peak at about 4.0 eV is mainly contributed by the BDT unit. Overall, our findings provide a good understanding of mechanism about the red-shift of optical absorption spectra of copolymers and can serve as guidance for organic polymer design in photovoltaic cell experimentally.
      Corresponding author: Wang Hai-Yan, why81@zzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61440030) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20114101110001).
    [1]

    Zhang S Q, Ye L, Zhao W C, Yang B, Wang Q, Hou J H 2015 Sci. China Chem. 58 248

    [2]

    Ahmadi M, Dafeh S R, Fatehy H 2016 Chin. Phys. B 25 047201

    [3]

    Xu Z H, Chen W B, Ye W Q, Yang W F 2014 Acta Phys. Sin. 63 218801 (in Chinese) [许中华, 陈卫兵, 叶伟琼, 杨伟丰 2014 物理学报 63 218801]

    [4]

    Wang T H, Chen C B, Guo K P, Chen G, Xu T, Wei B 2016 Chin. Phys. B 25 038402

    [5]

    Jin S Q, Xu Z, Zhao S L, Zhao J, Li Y, Deng L J 2016 Acta Phys. Sin. 65 028801 (in Chinese) [金士琪, 徐征, 赵谡玲, 赵蛟, 李杨, 邓丽娟 2016 物理学报 65 028801]

    [6]

    He Z C, Zhong C M, Huang X, Wong W Y, Wu H B, Chen L W, Su S J, Cao Y 2011 Adv. Mater. 23 4636

    [7]

    Liu Y H, Zhao J B, Li Z K, Mu C, Ma W, Hu H W, Jiang K, Lin H R, Ade H, Yan H 2014 Nat. Commun. 5 5293

    [8]

    Hou J H, Park M H, Zhang S Q, Yao Y, Chen L M, Li J, Yang Y 2008 Macromolecules 41 6012

    [9]

    Li Y W, Chen Y J, Liu X, Wang Z, Yang X M, Tu Y F, Zhu X L 2011 Macromolecules 44 6370

    [10]

    Wang X C, Sun Y P, Chen S, Guo X, Zhang M J, Li X Y, Li Y F, Wang H Q 2012 Macromolecules 45 1208

    [11]

    Wang X C, Jiang P, Chen Y, Luo H, Zhang Z G, Wang H Q, Li X Y, Yu G, Li Y F 2013 Macromolecules 46 4805

    [12]

    Cho H H, Kang T E, Kim K H, Kang H, Kim H J, Kim B J 2012 Macromolecules 45 6415

    [13]

    He Z C, Zhong C M, Su S J, Xu M, Wu H B, Cao Y 2012 Nat. Photonics 190 591

    [14]

    Pan H, Li Y, Wu Y, Liu P, Ong B S, Zhu S, Xu G 2007 J. Am. Chem. Soc. 129 4112

    [15]

    You J B, Dou L T, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C C, Gao J, Li G, Yang Y 2013 Nat. Commun. 4 1446

    [16]

    Kim J H, Shin S A, Park J B, Song C E, Shin W S, Yang H, Li Y F, Hwang D H 2014 Macromolecules 47 1613

    [17]

    Huang Y H, Zhang M, Chen H J, Wu F, Cao Z C, Zhang L J, Tan S T J 2014 J. Mater. Chem. A 2 5218

    [18]

    He P, Li Z F, Hou Q F, Wang Y L 2013 Chinese J. Org. Chem. 33 288

    [19]

    Stuart A C, Tumbleston J R, Zhou H X, Li W T, Liu S B, Ade H, You W 2013 J. Am. Chem. Soc. 135 1806

    [20]

    Zhou E J, Cong J Z, Hashimoto K, Tajima K 2013 Macromolecules 46 763

    [21]

    Kularatne R S, Sista P, Nguyen H Q, Bhatt M P, Biewer M C, Stefan M C 2012 Macromolecules 45 7855

    [22]

    Gedefaw D, Tessarolo M, Zhuang W L, Kroon R, Wang E G, Bolognesi M, Seri M, Muccinib M, Andersson M R 2014 Polym. Chem-UK. 5 2083

    [23]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [24]

    Blchl P E 1994 Phys. Rev. B: Condens. Matter 50 17953

    [25]

    Yi D, Wu Z, Yang L, Dai Y, Xie S J 2015 Acta Phys. Sin. 64 187305 (in Chinese) [伊丁, 武镇, 杨柳, 戴瑛, 解士杰 2015 物理学报 64 187305]

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [27]

    Rieger R, Beckmann D, Mavrinskiy A, Kastler M, Mllen K 2010 Chem. Mater. 22 5314

    [28]

    Tang S, Zhang J 2011 J. Phys. Chem. A 115 5184

    [29]

    Blouin N, Michaud A, Gendron D, Wakim S, Blair E, Neagu-Plesu R, Belletete M, Duricher G, Tao Y, Leclerc M 2008 J. Am. Chem. Soc. 130 732

    [30]

    Mikroyannidis J, Kabanakis A, Kumar A, Sharma S, Vijay Y, Sharma G 2010 Langmuir 26 12909

    [31]

    Azazi A, Mabrouk A, Chemek M, Kreher D, Alimi K 2014 Synthetic Met. 198 314

    [32]

    Sun J, Wang H T, He J, Tian Y 2005 Phys. Rev. B 71 125132

  • [1]

    Zhang S Q, Ye L, Zhao W C, Yang B, Wang Q, Hou J H 2015 Sci. China Chem. 58 248

    [2]

    Ahmadi M, Dafeh S R, Fatehy H 2016 Chin. Phys. B 25 047201

    [3]

    Xu Z H, Chen W B, Ye W Q, Yang W F 2014 Acta Phys. Sin. 63 218801 (in Chinese) [许中华, 陈卫兵, 叶伟琼, 杨伟丰 2014 物理学报 63 218801]

    [4]

    Wang T H, Chen C B, Guo K P, Chen G, Xu T, Wei B 2016 Chin. Phys. B 25 038402

    [5]

    Jin S Q, Xu Z, Zhao S L, Zhao J, Li Y, Deng L J 2016 Acta Phys. Sin. 65 028801 (in Chinese) [金士琪, 徐征, 赵谡玲, 赵蛟, 李杨, 邓丽娟 2016 物理学报 65 028801]

    [6]

    He Z C, Zhong C M, Huang X, Wong W Y, Wu H B, Chen L W, Su S J, Cao Y 2011 Adv. Mater. 23 4636

    [7]

    Liu Y H, Zhao J B, Li Z K, Mu C, Ma W, Hu H W, Jiang K, Lin H R, Ade H, Yan H 2014 Nat. Commun. 5 5293

    [8]

    Hou J H, Park M H, Zhang S Q, Yao Y, Chen L M, Li J, Yang Y 2008 Macromolecules 41 6012

    [9]

    Li Y W, Chen Y J, Liu X, Wang Z, Yang X M, Tu Y F, Zhu X L 2011 Macromolecules 44 6370

    [10]

    Wang X C, Sun Y P, Chen S, Guo X, Zhang M J, Li X Y, Li Y F, Wang H Q 2012 Macromolecules 45 1208

    [11]

    Wang X C, Jiang P, Chen Y, Luo H, Zhang Z G, Wang H Q, Li X Y, Yu G, Li Y F 2013 Macromolecules 46 4805

    [12]

    Cho H H, Kang T E, Kim K H, Kang H, Kim H J, Kim B J 2012 Macromolecules 45 6415

    [13]

    He Z C, Zhong C M, Su S J, Xu M, Wu H B, Cao Y 2012 Nat. Photonics 190 591

    [14]

    Pan H, Li Y, Wu Y, Liu P, Ong B S, Zhu S, Xu G 2007 J. Am. Chem. Soc. 129 4112

    [15]

    You J B, Dou L T, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C C, Gao J, Li G, Yang Y 2013 Nat. Commun. 4 1446

    [16]

    Kim J H, Shin S A, Park J B, Song C E, Shin W S, Yang H, Li Y F, Hwang D H 2014 Macromolecules 47 1613

    [17]

    Huang Y H, Zhang M, Chen H J, Wu F, Cao Z C, Zhang L J, Tan S T J 2014 J. Mater. Chem. A 2 5218

    [18]

    He P, Li Z F, Hou Q F, Wang Y L 2013 Chinese J. Org. Chem. 33 288

    [19]

    Stuart A C, Tumbleston J R, Zhou H X, Li W T, Liu S B, Ade H, You W 2013 J. Am. Chem. Soc. 135 1806

    [20]

    Zhou E J, Cong J Z, Hashimoto K, Tajima K 2013 Macromolecules 46 763

    [21]

    Kularatne R S, Sista P, Nguyen H Q, Bhatt M P, Biewer M C, Stefan M C 2012 Macromolecules 45 7855

    [22]

    Gedefaw D, Tessarolo M, Zhuang W L, Kroon R, Wang E G, Bolognesi M, Seri M, Muccinib M, Andersson M R 2014 Polym. Chem-UK. 5 2083

    [23]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [24]

    Blchl P E 1994 Phys. Rev. B: Condens. Matter 50 17953

    [25]

    Yi D, Wu Z, Yang L, Dai Y, Xie S J 2015 Acta Phys. Sin. 64 187305 (in Chinese) [伊丁, 武镇, 杨柳, 戴瑛, 解士杰 2015 物理学报 64 187305]

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [27]

    Rieger R, Beckmann D, Mavrinskiy A, Kastler M, Mllen K 2010 Chem. Mater. 22 5314

    [28]

    Tang S, Zhang J 2011 J. Phys. Chem. A 115 5184

    [29]

    Blouin N, Michaud A, Gendron D, Wakim S, Blair E, Neagu-Plesu R, Belletete M, Duricher G, Tao Y, Leclerc M 2008 J. Am. Chem. Soc. 130 732

    [30]

    Mikroyannidis J, Kabanakis A, Kumar A, Sharma S, Vijay Y, Sharma G 2010 Langmuir 26 12909

    [31]

    Azazi A, Mabrouk A, Chemek M, Kreher D, Alimi K 2014 Synthetic Met. 198 314

    [32]

    Sun J, Wang H T, He J, Tian Y 2005 Phys. Rev. B 71 125132

  • [1] Liu Heng, Li Ye, Du Meng-Chao, Qiu Peng, He Ying-Feng, Song Yi-Meng, Wei Hui-Yun, Zhu Xiao-Li, Tian Feng, Peng Ming-Zeng, Zheng Xin-He. Atomic layer deposition of AlGaN alloy and its application in quantum dot sensitized solar cells. Acta Physica Sinica, 2023, 72(13): 137701. doi: 10.7498/aps.72.20230113
    [2] Wang Ji-Ming, Chen Ke, Xie Wei-Guang, Shi Ting-Ting, Liu Peng-Yi, Zheng Yi-Fan, Zhu Rui. Research progress of solution processed all-inorganic perovskite solar cell. Acta Physica Sinica, 2019, 68(15): 158806. doi: 10.7498/aps.68.20190355
    [3] Fu Peng-Fei, Yu Dan-Ni, Peng Zi-Jian, Gong Jin-Kang, Ning Zhi-Jun. Perovskite solar cells passivated by distorted two-dimensional structure. Acta Physica Sinica, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [4] Xia Jun-Min, Liang Chao, Xing Gui-Chuan. Inkjet printed perovskite solar cells: progress and prospects. Acta Physica Sinica, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [5] Wang Ji-Fei, Lin Dong-Xu, Yuan Yong-Bo. Recent progress of ion migration in organometal halide perovskite. Acta Physica Sinica, 2019, 68(15): 158801. doi: 10.7498/aps.68.20190853
    [6] Luo Qiang, Yang Heng, Guo Ping, Zhao Jian-Fei. Density functional theory calculation of structure and electronic properties in N-methane hydrate. Acta Physica Sinica, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [7] Fan Wei, Zeng Zhi. Quaternary sulphides Cu2Zn(Ti, Zr, Hf)S4, the new type of photovoltaic materials. Acta Physica Sinica, 2016, 65(6): 068801. doi: 10.7498/aps.65.068801
    [8] Xia Xiang, Liu Xi-Zhe. Effects of CH3NH3I on fabricating CH3NH3PbI(3-x)Clx perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038104. doi: 10.7498/aps.64.038104
    [9] Zhang Dan-Fei, Zheng Ling-Ling, Ma Ying-Zhuang, Wang Shu-Feng, Bian Zu-Qiang, Huang Chun-Hui, Gong Qi-Huang, Xiao Li-Xin. Factors influencing the stability of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038803. doi: 10.7498/aps.64.038803
    [10] Yuan Huai-Liang, Li Jun-Peng, Wang Ming-Kui. Recent progress in research on solid organic-inorganic hybrid solar cells. Acta Physica Sinica, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [11] Zhang Lai-Bin, Ren Ting-Qi. Theoretical study on the photophysical properties of the newly designed guanine analog y-guanine and its tautomers. Acta Physica Sinica, 2015, 64(7): 077101. doi: 10.7498/aps.64.077101
    [12] Fan Wei, Zeng Zhi. First-principles studies on the properties of Cu2ZnSnS4 grain-boundaries due to photovoltaic effect. Acta Physica Sinica, 2015, 64(23): 238801. doi: 10.7498/aps.64.238801
    [13] Yang Zhen-Qing, Bai Xiao-Hui, Shao Chang-Jin. Density functional theory studies of (TiO2)12 quantum ring and its electronic properties when doped with transition metal compounds. Acta Physica Sinica, 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [14] Ding Mei-Bin, Lou Chao-Gang, Wang Qi-Long, Sun Qiang. Influence of quantum wells on the quantum efficiency of GaAs solar cells. Acta Physica Sinica, 2014, 63(19): 198502. doi: 10.7498/aps.63.198502
    [15] Ke Shao-Ying, Wang Chong, Pan Tao, He Peng, Yang Jie, Yang Yu. Optimization design of hydrogenated amorphous silicon germanium thin film solar cell with graded band gap profile. Acta Physica Sinica, 2014, 63(2): 028802. doi: 10.7498/aps.63.028802
    [16] Wang Hai-Xiao, Zheng Xin-He, Wu Yuan-Yuan, Gan Xing-Yuan, Wang Nai-Ming, Yang Hui. Well layer design for 1eV absorption band edge of GaInAs/GaNAs super-lattice solar cell. Acta Physica Sinica, 2013, 62(21): 218801. doi: 10.7498/aps.62.218801
    [17] Chen Xiao-Bo, Yang Guo-Jian, Li Song, Sawanobori N., Xu Yi-Zhuang, Chen Xiao-Duan, Zhou Gu. First-order and second-order infrared quantum cutting of Ho3+ Yb3+ doped oxyfluoride vitroceramics. Acta Physica Sinica, 2012, 61(22): 227803. doi: 10.7498/aps.61.227803
    [18] Zhang Chun-Lin, Chen Xiao-Bo, Yu Chun-Lei, Hu Li-Li, Pan Wei, Wu Zheng-Long, Liao Hong-Bo. Infrared multi-photon quantum cutting of Er-doped nanophase oxyfluoride vitroceramics. Acta Physica Sinica, 2010, 59(7): 5091-5099. doi: 10.7498/aps.59.5091
    [19] Hao Hui-Ying, Kong Guang-Lin, Zeng Xiang-Bo, Xu Ying, Diao Hong-Wei, Liao Xian-Bo. Transition films from amporphous to microcrystalline silicon and solar cells. Acta Physica Sinica, 2005, 54(7): 3327-3331. doi: 10.7498/aps.54.3327
    [20] Tan Ming-Qiu, Tao Xiang-Ming, Xu Xiao-Jun, Cai Jian-Qiu. Density functional theory study on the electronic structure of UAl3 a nd USn3. Acta Physica Sinica, 2003, 52(12): 3142-3149. doi: 10.7498/aps.52.3142
Metrics
  • Abstract views:  4963
  • PDF Downloads:  244
  • Cited By: 0
Publishing process
  • Received Date:  17 December 2015
  • Accepted Date:  07 March 2016
  • Published Online:  05 May 2016

/

返回文章
返回