Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamic evolution of 100-keV H+ through polycarbonate nanocapillaries

Zhou Wang Niu Shu-Tong Yan Xue-Wen Bai Xiong-Fei Han Cheng-Zhi Zhang Mei-Xiao Zhou Li-Hua Yang Ai-Xiang Pan Peng Shao Jian-Xiong Chen Xi-Meng

Citation:

Dynamic evolution of 100-keV H+ through polycarbonate nanocapillaries

Zhou Wang, Niu Shu-Tong, Yan Xue-Wen, Bai Xiong-Fei, Han Cheng-Zhi, Zhang Mei-Xiao, Zhou Li-Hua, Yang Ai-Xiang, Pan Peng, Shao Jian-Xiong, Chen Xi-Meng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In recent years, the guiding effect of highly charged ions (HCIs) through insulating nanocapillary membrane has received extensive attention. It is found that slow highly charged ions at keV energies can be guided along the capillary even when the title angle of membrane is a few degrees and larger than geometry opening angle of the capillary. Initially, Stolterfoht et al. (2002 Phys. Rev. Lett. 88 133201), according to the incident ions deposit positive charges on the capillary surface in a self-organizing manner, proposed scattering and guiding regions to explain this guiding phenomenon. Hereafter, a detailed experiment and simulation performed by Skog et al. (2008 Phys. Rev. Lett. 101 223202) provided clear evidence that the guiding process is actually attributed to the self-organized charge patches formed on the inner capillary walls. HCIs entering into a capillary may hit the surface, leaving their charge on the inner wall of the capillary. When the capillary axis is tilted with respect to the beam incidence direction, a charge patch is formed in the capillary entrance, simultaneously a repulsive electric field is created. After sufficient charge deposition this field is strong enough to deflect the subsequent ions in the direction of the capillary exit. Therefore, the ions are guided through the capillary. The deflection at the charge patch only occurs at relatively large distances from the capillary wall so that the incident charge state of the ions is kept during the passage through the capillary. Further experimental and theoretical studies on various target materials, such as polyethylene terephthalate (PET), polycarbonate (PC), SiO2, and Al2O3 indeed found that a single or a small number of charge patches near the entrance formed in the charge up process dominate the observed oscillatory variations of the ion emission angle and the final guiding process. Besides, measurements and simulations of the steering of swift ions at MeV energies have shown that the transmission mechanism of the high energy ions in a tapered tube is primarily dominated by multiple random inelastic collisions below the surface and the charge patches are not responsible for the transmission process. However, the studies of the transmission of hundreds keV ions through nanocapillaries are still lacking so far. In this work, we observe the evolution of the angular distribution, charge state distribution, FWHM and transmission rate of 100 keV H+ ions incident on a polycarbonate (PC) membrane at +1 tilt angle. It is found that the transmitted particles are located around the direction along the incident beam, not along the capillary axis, which suggests that the mechanism of hundreds keV (E/q~100 kV) protons through capillaries is significantly different from that for the guiding effect of keV protons. We present a qualitative explanation based on the data: that the 100 keV H+ are transmitted by multiple random inelastic collisions below the surface is attributed to the absence of the deposited charges on the surface of the capillary at the beginning of the experiment. After the equilibrium, several charge patches are formed on the inner wall of the capillary, which suppresses the ions to penetrate into the surface of the capillary, while the H+ is transmitted via specular scattering above the surface (or closest to the surface) assisted by the charge patches, and finally is emitted in the incident direction through twice specular scattering. This finding increases the knowledge of charged ions through nanocapillaries, which is conducible to the applications of nanosized beams produced by capillaries or tapered glass within hundreds keV energies in many scientific fields.
    [1]

    Steinbock L J, Otto O, Chimerel C, Gornall J, Keyser U F 2010 Nano Lett. 10 2493

    [2]

    Ltant S E, van Buuren T W, Terminello L J 2004 Nano Lett. 4 1705

    [3]

    Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl. Phys. Lett. 92 023509

    [4]

    Martin C R 1994 Science 266 1961

    [5]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201

    [6]

    Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006 Appl. Phys. Lett. 89 163502

    [7]

    Cassimi A, Ikeda T, Maunoury L, Zhou C L, Guillous S, Mery A, Lebius H, Grygiel A, C, Khemliche H, Roncin P, Merabet H, Tanis J A 2012 Phys. Rev. A 86 062902

    [8]

    Stolterfoht N, Hellhammer R, Bundesmann J, Fink D, Kanai Y, Hoshino M, Kambara T, Ikeda T, Yamazaki Y 2007 Phys. Rev. A 76 022712

    [9]

    Stolterfoht N, Hellhammer R, Fink D, Sulik B, Juhsz Z, Bodewits E, Dang H M, Hoekstra R 2009 Phys. Rev. A 79 022901

    [10]

    Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202

    [11]

    Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901

    [12]

    Cassimi A, Maunoury L, Muranaka T, Huber B, Dey K R, Lebius H, Lelivre D, Ramillon J M, Been T, Ikeda T, Kanai Y, Kojima T M, Iwai Y, Yamazaki Y, Khemliche H, Bundaleski N, Roncin P 2009 Nucl. Instrum. Meth. B 267 674

    [13]

    Juhsz Z, Sulik B, Rcz R, Biri S, J Bereczky R, Tksi K, Kvr , Plinks J, Stolterfoht N 2010 Phys. Rev. A 82 062903

    [14]

    Schiessl K, Tksi K, Solleder B, Lemell C, Burgdrfer J 2009 Phys. Rev. Lett. 102 163201

    [15]

    Milosavljević A R, Vkor G, Peić Z D, Kolarž P, ević D, Marinković B P, Mtfi-Tempfli S, Mtfi-Tempfli M, Piraux L 2007 Phys. Rev. A 75 030901

    [16]

    Das S, Dassanayake B S, Winkworth M, Baran J L, Stolterfoht N, Tanis J A 2007 Phys. Rev. A 76 042716

    [17]

    Feng D, Shao J X, Zhao L, Ji M C, Zou X R, Wang G Y, Ma Y L, Zhou W, Zhou H, Li Y, Zhou M, Chen X M 2012 Phys. Rev. A 85 064901

    [18]

    Hasegawa J, Jaiyen S, Polee C, Chankow N, Oguri Y 2011 J. Appl. Phys. 110 044913

    [19]

    Mo D 2009 Ph. D. Dissertation (Lanzhou: Institute of Moden Physice. Chiese Academy of Sciences) (in Chinese) [莫丹 2009 博士学位论文(兰州: 中国科学院近代物理研究所)]

    [20]

    Stolterfoht N, Hellhammer R, Sulik B, Juhsz Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev. A 83 062901

  • [1]

    Steinbock L J, Otto O, Chimerel C, Gornall J, Keyser U F 2010 Nano Lett. 10 2493

    [2]

    Ltant S E, van Buuren T W, Terminello L J 2004 Nano Lett. 4 1705

    [3]

    Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl. Phys. Lett. 92 023509

    [4]

    Martin C R 1994 Science 266 1961

    [5]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201

    [6]

    Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006 Appl. Phys. Lett. 89 163502

    [7]

    Cassimi A, Ikeda T, Maunoury L, Zhou C L, Guillous S, Mery A, Lebius H, Grygiel A, C, Khemliche H, Roncin P, Merabet H, Tanis J A 2012 Phys. Rev. A 86 062902

    [8]

    Stolterfoht N, Hellhammer R, Bundesmann J, Fink D, Kanai Y, Hoshino M, Kambara T, Ikeda T, Yamazaki Y 2007 Phys. Rev. A 76 022712

    [9]

    Stolterfoht N, Hellhammer R, Fink D, Sulik B, Juhsz Z, Bodewits E, Dang H M, Hoekstra R 2009 Phys. Rev. A 79 022901

    [10]

    Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202

    [11]

    Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901

    [12]

    Cassimi A, Maunoury L, Muranaka T, Huber B, Dey K R, Lebius H, Lelivre D, Ramillon J M, Been T, Ikeda T, Kanai Y, Kojima T M, Iwai Y, Yamazaki Y, Khemliche H, Bundaleski N, Roncin P 2009 Nucl. Instrum. Meth. B 267 674

    [13]

    Juhsz Z, Sulik B, Rcz R, Biri S, J Bereczky R, Tksi K, Kvr , Plinks J, Stolterfoht N 2010 Phys. Rev. A 82 062903

    [14]

    Schiessl K, Tksi K, Solleder B, Lemell C, Burgdrfer J 2009 Phys. Rev. Lett. 102 163201

    [15]

    Milosavljević A R, Vkor G, Peić Z D, Kolarž P, ević D, Marinković B P, Mtfi-Tempfli S, Mtfi-Tempfli M, Piraux L 2007 Phys. Rev. A 75 030901

    [16]

    Das S, Dassanayake B S, Winkworth M, Baran J L, Stolterfoht N, Tanis J A 2007 Phys. Rev. A 76 042716

    [17]

    Feng D, Shao J X, Zhao L, Ji M C, Zou X R, Wang G Y, Ma Y L, Zhou W, Zhou H, Li Y, Zhou M, Chen X M 2012 Phys. Rev. A 85 064901

    [18]

    Hasegawa J, Jaiyen S, Polee C, Chankow N, Oguri Y 2011 J. Appl. Phys. 110 044913

    [19]

    Mo D 2009 Ph. D. Dissertation (Lanzhou: Institute of Moden Physice. Chiese Academy of Sciences) (in Chinese) [莫丹 2009 博士学位论文(兰州: 中国科学院近代物理研究所)]

    [20]

    Stolterfoht N, Hellhammer R, Sulik B, Juhsz Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev. A 83 062901

  • [1] Ha Shuai, Zhang Wen-Ming, Xie Yi-Ming, Li Peng-Fei, Jin Bo, Niu Ben, Wei Long, Zhang Qi, Liu Zhong-Lin, Ma Yue, Lu Di, Wan Cheng-Liang, Cui Ying, Zhou Peng, Zhang Hong-Qiang, Chen Xi-Meng. Transmission of low-energy Cl ions through Al2O3 insulating nanocapillaries. Acta Physica Sinica, 2020, 69(9): 094101. doi: 10.7498/aps.69.20190933
    [2] Wang Xiang-Xian, Bai Xue-Lin, Pang Zhi-Yuan, Yang Hua, Qi Yun-Ping, Wen Xiao-Lei. Surface-enhanced Raman scattering effect of composite structure with gold nano-cubes and gold film separated by polymethylmethacrylate film. Acta Physica Sinica, 2019, 68(3): 037301. doi: 10.7498/aps.68.20190054
    [3] Niu Shu-Tong, Pan Peng, Zhu Bing-Hui, Song Han-Yu, Jin Yi-Lei, Yu Lou-Fei, Han Cheng-Zhi, Shao Jian-Xiong, Chen Xi-Meng. Experimental and theoritical research on the dynamical transmission of 30 keV H+ ions through polycarbonate nanocapillaries. Acta Physica Sinica, 2018, 67(20): 203401. doi: 10.7498/aps.67.20181062
    [4] Niu Shu-Tong, Zhou Wang, Pan Peng, Zhu Bing-Hui, Song Han-Yu, Shao Jian-Xiong, Chen Xi-Meng. Transmission of 30-keV He2+ ions through polycarbonate nanocapillaries: Dependence on the incident angle. Acta Physica Sinica, 2018, 67(17): 176102. doi: 10.7498/aps.67.20172484
    [5] Bai Xiong-Fei, Niu Shu-Tong, Zhou Wang, Wang Guang-Yi, Pan Peng, Fang Xing, Chen Xi-Meng, Shao Jian-Xiong. Dynamic evolution of 20-keV H+ transmitted through polycarbonate nanocapillaries. Acta Physica Sinica, 2017, 66(9): 093401. doi: 10.7498/aps.66.093401
    [6] Li Jing, Feng Yan-Hui, Zhang Xin-Xin, Huang Cong-Liang, Yang Mu. Thermal conductivities of metallic nanowires with considering surface and grain boundary scattering. Acta Physica Sinica, 2013, 62(18): 186501. doi: 10.7498/aps.62.186501
    [7] Wang Ning, Dong Gang, Yang Yin-Tang, Chen Bin, Wang Feng-Juan, Zhang Yan. Study of the grain size effects on electrical resistivity model for ultrathin (10-50 nm) Cu films. Acta Physica Sinica, 2012, 61(1): 016802. doi: 10.7498/aps.61.016802
    [8] Wang Xue-Tao, Guan Qing-Feng, Qiu Dong-Hua, Cheng Xiu-Wei, Li Yan, Peng Dong-Jin, Gu Qian-Qian. Defect microstructures in polycrystalline pure copper induced by high-current pulsed electron beam——the vacancy defect clusters and surface micropores. Acta Physica Sinica, 2010, 59(10): 7252-7257. doi: 10.7498/aps.59.7252
    [9] Chen Yi-Feng, Chen Xi-Meng, Lou Feng-Jun, Xu Jin-Zhang, Shao Jian-Xiong, Sun Guang-Zhi, Wang Jun, Xi Fa-Yuan, Yin Yong-Zhi, Wang Xing-An, Xu Jun-Kui, Cui Ying, Ding Bao-Wei. Guiding of 60 keV O+ ions through Al2O3 nanocapillaries with two different diameters. Acta Physica Sinica, 2010, 59(1): 222-226. doi: 10.7498/aps.59.222
    [10] Zhao Min, An Zhen-Lian, Yao Jun-Lan, Xie Chen, Xia Zhong-Fu. Trap capture properties of space charge and void breakdown charge in a cellular polypropylene electret film. Acta Physica Sinica, 2009, 58(1): 482-487. doi: 10.7498/aps.58.482
    [11] Liu Man, Cheng Chuan-Fu, Song Hong-Sheng, Teng Shu-Yun, Liu Gui-Yuan. Phase singularities of speckle field produced by the scattering from Gaussian correlation random surfaces. Acta Physica Sinica, 2009, 58(8): 5376-5384. doi: 10.7498/aps.58.5376
    [12] Hou Hai-Hong, Sun Xi-Lian, Tian Guang-Lei, Wu Shi-Gang, Ma Xiao-Feng, Shao Jian-Da, Fan Zheng-Xiu. Research on the surface scattering properties of optical films by the total integrated scatter. Acta Physica Sinica, 2009, 58(9): 6425-6429. doi: 10.7498/aps.58.6425
    [13] An Zhen-Lian, Tang Min-Min, Xia Zhong-Fu, Sheng Xiao-Chen, Zhang Xiao-Qing. Chemical surface treatment and charge stability of polypropylene cellular electret film. Acta Physica Sinica, 2006, 55(2): 803-810. doi: 10.7498/aps.55.803
    [14] Xia Qing-Zhong, Chen Bo, Zeng Gui-Yu, Luo Sun-Huo, Dong Hai-Shan, Rong Li-Xia, Dong Bao-Zhong. Experimental investigation of insensitive explosive C6H6N6O6 by small angle x-ray scattering technique. Acta Physica Sinica, 2005, 54(7): 3273-3277. doi: 10.7498/aps.54.3273
    [15] Song Hong-Sheng, Cheng Chuan-Fu, Zhang Ning-Yu, Ren Xiao-Rong, Teng Shu-Yun, Xu Zhi-Zhan. Study on the dependence of the contrast of image speckles produced by strong scattering-object on random surface and imaging system. Acta Physica Sinica, 2005, 54(2): 669-676. doi: 10.7498/aps.54.669
    [16] CHEN WEI-ZHONG, WEI RONG-JUE. FLOQUET ANALYSIS FOR PATTERNS ON THE SURFACE OF FLUID SUBJECT TO DOUBLE-FREQUENCY EXCITATION. Acta Physica Sinica, 1999, 48(12): 2259-2265. doi: 10.7498/aps.48.2259
    [17] CHENG CHUAN-FU, QI DONG-PING, LIU DE-LI, TENG SHU-YUN. THE COMPUTATIONAL SIMULATIONS OF THE GAUSSIAN CORRELATION RANDOM SURFACE AND ITS LIGHT-SCATTERING SPECKLE FIELD AND THE ANALYSIS OF THE INTENSITY PROBABILITY DENSITY. Acta Physica Sinica, 1999, 48(9): 1635-1643. doi: 10.7498/aps.48.1635
    [18] DONG ZHENG-CHAO, SHENG LI, XING DING-YU, DONG JIN-MING. SURFACE AND INTERFACE SCATTERING EFFECTS ON QUANTUM TRANSPORT IN BIMETALLIC FILMS. Acta Physica Sinica, 1996, 45(2): 249-257. doi: 10.7498/aps.45.249
    [19] PU XIAO-YUN, WANG ZHONG-YONG, MO YU-JUN, WANG RUI-LAN, LI HONG-CHENG. THE INFLUENCE OF Pt AND Pd ON SURFACE ENHANCED RAMAN SCATTERING OF PYRIDINE ON Ag SURFACE. Acta Physica Sinica, 1988, 37(7): 1137-1143. doi: 10.7498/aps.37.1137
    [20] SUN XIN. THE COLLECTIVE EXCITATION IN CHARGED SURFACE LAYER. Acta Physica Sinica, 1978, 27(6): 752-755. doi: 10.7498/aps.27.752
Metrics
  • Abstract views:  5217
  • PDF Downloads:  204
  • Cited By: 0
Publishing process
  • Received Date:  17 January 2016
  • Accepted Date:  07 March 2016
  • Published Online:  05 May 2016

/

返回文章
返回