Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical calculation of electron transport properties of atomic chains of (GaAs)n (n=1-4)

Liu Fu-Ti Zhang Shu-Hua Cheng Yan Chen Xiang-Rong Cheng Xiao-Hong

Citation:

Theoretical calculation of electron transport properties of atomic chains of (GaAs)n (n=1-4)

Liu Fu-Ti, Zhang Shu-Hua, Cheng Yan, Chen Xiang-Rong, Cheng Xiao-Hong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Electron transport properties of the (GaAs)n(n=1-4) linear atomic chains, which are sandwiched between two infinite Au(100)-33 leads, are investigated with a combination of density functional theory and non-equilibrium Greens function method from first principle. We simulate the Au-(GaAs)n-Au nanoscale junctions breaking process, optimize the geometric structures of four kinds of junctions, calculate the cohesion energies and equilibrium conductances of junctions at different distances. The calculation results show that there is a stable structure for each nanoscale junction. The average bond-lengths of Ga-As in each chain at equilibrium positions for stable structure are 0.220 nm, 0.224 nm, 0.223 nm, 0.223 nm, respectively. The corresponding equilibrium conductances are 2.328G0, 1.167G0, 0.639G0, and 1.237G0, respectively. It means that each of all the junctions has a good conductivity. We calculate the transmission spectra of the all the chains. With the increase of atomic number in the (GaAs)n (n=1-4) chains, there appears no oscillation phenomenon for the equilibrium conductance. We calculate the projected densities of states of all nanoscale junctions at equilibrium positions, and the results show that electronic transport channel is mainly contributed by the px and py orbital electrons of Ga and As atoms. In the voltage range of 0-2 V, we calculate the current-voltage characteristics of junctions at equilibrium positions. With the increase of external bias, the current increases, and the I-V curves of junctions show linear characteristics for the (GaAs)n (n=1-3) atomic chains. However, there appears a negative differential resistance phenomenon in each of the voltage ranges of 0.6-0.7 V and 0.8-0.9 V for the (GaAs)4 linear atomic chain.
      Corresponding author: Liu Fu-Ti, futiliu@163.com;ycheng@scu.edu.cn ; Cheng Yan, futiliu@163.com;ycheng@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174214, 11204192), the Open Research Fund of Computational Physics Key Laboratory of Sichuan Province, Yibin University, China (Grant No. JSWL2015KF02), and the Scientific Research Key Project of Yibin University, China (Grant No. 2015QD03).
    [1]

    Ohnishi H, Kondo Y, Takayanagi K 1998 Nature 395 780

    [2]

    Bowler D R 2004 J.Phys.:Condens.Matter 16 R721

    [3]

    Yanson A I, Rubio-Bollinger G, van der Brom H E, Agrait N, van Ruitenbeek J M 1998 Nature 395 783

    [4]

    Ferrer J, Martin-Rodero A, Flores F 1988 Phys. Rev. B 38 R10113

    [5]

    Smit R H M, Untiedt C, Yanson A I, van Ruitenbeek J M 2001 Phys. Rev. Lett. 87 266102

    [6]

    Smit R H M, Untiedt C, Rubio-Bollinger G, Segers R C, van Ruitenbeek J M 2003 Phys. Rev. Lett. 91 076805

    [7]

    Bahn S R, Jacobsen K W 2001 Phys. Rev. Lett. 87 266101

    [8]

    Nakamura A, Brandbyge M, Hansen L B, Jacobsen K W 1999 Phys. Rev. Lett. 82 1538

    [9]

    Tongay S, Senger R T, Dag S, Ciraci S 2004 Phys. Rev. Lett. 93 136404

    [10]

    Senger R T, Tongay S, Durgun E, Ciraci S 2005 Phys. Rev. B 72 075419

    [11]

    Zhang T, Cheng Y, Chen X R 2014 RSC Advances 94 51838

    [12]

    Liu F T, Cheng Y, Yang F B, Cheng X H, Chen X R 2013 Acta Phys. Sin. 62 107401 (in Chinese) [柳福提, 程艳, 羊富彬, 程晓洪, 陈向荣 2013 物理学报 62 107401]

    [13]

    Liu F T, Cheng Y, Yang F B, Chen X R 2013 Chin. Phys. Lett. 30 107303

    [14]

    Liu F T, Cheng Y, Yang F B, Chen X R 2014 Physica E 56 96

    [15]

    Zhang D L, Xu Y L, Zhang J B, Miao X S 2012 Phys. Lett. A 376 3272

    [16]

    Dyachkov P N, Zaluev V A, Piskunov S N, Zhukovskii Y F 2015 RSC Adv. 111 91751

    [17]

    Liu F T, Cheng Y, Chen X R, Cheng X H 2014 Acta Phys. Sin. 63 137303 (in Chinese) [柳福提, 程艳, 陈向荣, 程晓洪 2014 物理学报 63 137303]

    [18]

    Liu F T, Cheng Y, Yang F B, Chen X R 2014 Eur. Phys. J. Appl. Phys. 66 30401

    [19]

    Kohn W, Sham L 1965 Phys. Rev. B 140 A1133

    [20]

    Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press)

    [21]

    Reed M A, Zhou C, Miller C J, Burgin T P, Tour J M 1997 Science 278 252

    [22]

    Huang B, Zhang J X, Li R, Shen Z Y, Hou S M, Zhao X Y, Xue Z Q, Wu Q D 2006 Acta Phys. Chim. Sin. 22 161 (in Chinese) [黄飙, 张家兴, 李锐, 申自勇, 侯士敏, 赵兴钰, 薛增泉, 吴全德 2006 物理化学学报 22 161]

    [23]

    Ke S H, Baranger H U, Yang W T 2005 J. Chem. Phys. 122 074704

    [24]

    Liu F T, Cheng Y, Chen X R, Cheng X H, Zeng Z Q 2014 Acta Phys. Sin. 63 177304 (in Chinese) [柳福提, 程艳, 陈向荣, 程晓洪, 曾志强 2014 物理学报 63 177304]

    [25]

    Bttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207

    [26]

    Troullier N, Martins J L 1991 Phys. Rev. B 43 1993

    [27]

    Rocha A R, Garcia-Suarez V M, Bailey S, Lambert C, Ferrer J, Sanvito S 2006 Phys. Rev. B 73 085414

    [28]

    Perdew J P 1986 Phys. Rev. B 33 8822

    [29]

    Lang N D, Avouris Ph 1998 Phys. Rev. Lett. 81 3515

    [30]

    Tsukamoto S, Hirose K 2002 Phys. Rev. B 66 161402

  • [1]

    Ohnishi H, Kondo Y, Takayanagi K 1998 Nature 395 780

    [2]

    Bowler D R 2004 J.Phys.:Condens.Matter 16 R721

    [3]

    Yanson A I, Rubio-Bollinger G, van der Brom H E, Agrait N, van Ruitenbeek J M 1998 Nature 395 783

    [4]

    Ferrer J, Martin-Rodero A, Flores F 1988 Phys. Rev. B 38 R10113

    [5]

    Smit R H M, Untiedt C, Yanson A I, van Ruitenbeek J M 2001 Phys. Rev. Lett. 87 266102

    [6]

    Smit R H M, Untiedt C, Rubio-Bollinger G, Segers R C, van Ruitenbeek J M 2003 Phys. Rev. Lett. 91 076805

    [7]

    Bahn S R, Jacobsen K W 2001 Phys. Rev. Lett. 87 266101

    [8]

    Nakamura A, Brandbyge M, Hansen L B, Jacobsen K W 1999 Phys. Rev. Lett. 82 1538

    [9]

    Tongay S, Senger R T, Dag S, Ciraci S 2004 Phys. Rev. Lett. 93 136404

    [10]

    Senger R T, Tongay S, Durgun E, Ciraci S 2005 Phys. Rev. B 72 075419

    [11]

    Zhang T, Cheng Y, Chen X R 2014 RSC Advances 94 51838

    [12]

    Liu F T, Cheng Y, Yang F B, Cheng X H, Chen X R 2013 Acta Phys. Sin. 62 107401 (in Chinese) [柳福提, 程艳, 羊富彬, 程晓洪, 陈向荣 2013 物理学报 62 107401]

    [13]

    Liu F T, Cheng Y, Yang F B, Chen X R 2013 Chin. Phys. Lett. 30 107303

    [14]

    Liu F T, Cheng Y, Yang F B, Chen X R 2014 Physica E 56 96

    [15]

    Zhang D L, Xu Y L, Zhang J B, Miao X S 2012 Phys. Lett. A 376 3272

    [16]

    Dyachkov P N, Zaluev V A, Piskunov S N, Zhukovskii Y F 2015 RSC Adv. 111 91751

    [17]

    Liu F T, Cheng Y, Chen X R, Cheng X H 2014 Acta Phys. Sin. 63 137303 (in Chinese) [柳福提, 程艳, 陈向荣, 程晓洪 2014 物理学报 63 137303]

    [18]

    Liu F T, Cheng Y, Yang F B, Chen X R 2014 Eur. Phys. J. Appl. Phys. 66 30401

    [19]

    Kohn W, Sham L 1965 Phys. Rev. B 140 A1133

    [20]

    Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press)

    [21]

    Reed M A, Zhou C, Miller C J, Burgin T P, Tour J M 1997 Science 278 252

    [22]

    Huang B, Zhang J X, Li R, Shen Z Y, Hou S M, Zhao X Y, Xue Z Q, Wu Q D 2006 Acta Phys. Chim. Sin. 22 161 (in Chinese) [黄飙, 张家兴, 李锐, 申自勇, 侯士敏, 赵兴钰, 薛增泉, 吴全德 2006 物理化学学报 22 161]

    [23]

    Ke S H, Baranger H U, Yang W T 2005 J. Chem. Phys. 122 074704

    [24]

    Liu F T, Cheng Y, Chen X R, Cheng X H, Zeng Z Q 2014 Acta Phys. Sin. 63 177304 (in Chinese) [柳福提, 程艳, 陈向荣, 程晓洪, 曾志强 2014 物理学报 63 177304]

    [25]

    Bttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207

    [26]

    Troullier N, Martins J L 1991 Phys. Rev. B 43 1993

    [27]

    Rocha A R, Garcia-Suarez V M, Bailey S, Lambert C, Ferrer J, Sanvito S 2006 Phys. Rev. B 73 085414

    [28]

    Perdew J P 1986 Phys. Rev. B 33 8822

    [29]

    Lang N D, Avouris Ph 1998 Phys. Rev. Lett. 81 3515

    [30]

    Tsukamoto S, Hirose K 2002 Phys. Rev. B 66 161402

  • [1] He Yan-Bin, Bai Xi. Electron transport of one-dimensional non-conjugated (CH2)n molecule chain coupling to graphene electrode. Acta Physica Sinica, 2021, 70(4): 046201. doi: 10.7498/aps.70.20200953
    [2] Liang Jin-Tao, Yan Xiao-Hong, Zhang Ying, Xiao Yang. Non-collinear magnetism and electronic transport of boron or nitrogen doped zigzag graphene nanoribbon. Acta Physica Sinica, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [3] Wu Yu, Cai Shao-Hong, Deng Ming-Sen, Sun Guang-Yu, Liu Wen-Jiang. First-principle study on quantum thermal transport in a polythiophene chain. Acta Physica Sinica, 2018, 67(2): 026501. doi: 10.7498/aps.67.20171198
    [4] Chen Xiao-Bin, Duan Wen-Hui. Quantum thermal transport and spin thermoelectrics in low-dimensional nano systems: application of nonequilibrium Green's function method. Acta Physica Sinica, 2015, 64(18): 186302. doi: 10.7498/aps.64.186302
    [5] Liu Fu-Ti, Cheng Yan, Chen Xiang-Rong, Cheng Xiao-Hong, Zeng Zhi-Qiang. Theoretical calculation of electron transport properties of the Au-Si60-Au molecular junctions. Acta Physica Sinica, 2014, 63(17): 177304. doi: 10.7498/aps.63.177304
    [6] Liu Fu-Ti, Cheng Yan, Chen Xiang-Rong, Cheng Xiao-Hong. Calculation of electron transport in GaAs nanoscale junctions using first-principles. Acta Physica Sinica, 2014, 63(13): 137303. doi: 10.7498/aps.63.137303
    [7] Liu Fu-Ti, Cheng Yan, Yang Fu-Bin, Cheng Xiao-Hong, Chen Xiang-Rong. First-principles calculations of the electron transport through Si4 cluster. Acta Physica Sinica, 2013, 62(14): 140504. doi: 10.7498/aps.62.140504
    [8] Liu Fu-Ti, Cheng Yan, Yang Fu-Bin, Cheng Xiao-Hong, Chen Xiang-Rong. First-principles calculations of the electronic transport in Au-Si-Au junctions. Acta Physica Sinica, 2013, 62(10): 107401. doi: 10.7498/aps.62.107401
    [9] Sun Wei-Feng. First-principles study of (InAs)1/(GaSb)1 superlattice atomic chains. Acta Physica Sinica, 2012, 61(11): 117104. doi: 10.7498/aps.61.117104
    [10] An Xing-Tao, Mu Hui-Ying, Xian Li-Fen, Liu Jian-Jun. Spin-polarized transport through double quantum-dot-array. Acta Physica Sinica, 2012, 61(15): 157201. doi: 10.7498/aps.61.157201
    [11] Fan Zhi-Qiang, Xie Fang. Effect of B and N doping on the negative differential resistance in molecular device. Acta Physica Sinica, 2012, 61(7): 077303. doi: 10.7498/aps.61.077303
    [12] Xu Shuang-Ying, Hu Lin-Hua, Li Wen-Xin, Dai Song-Yuan. Effect of interface contacts between TiO2 particles on electron transport in dye-sensitized solar cells. Acta Physica Sinica, 2011, 60(11): 116802. doi: 10.7498/aps.60.116802
    [13] Wang Li-Guang, Zhang Hong-Yu, Wang Chang, Terence K. S. W.. Electronic conductance of zigzag single wall carbon nanotube with an implanted Li atom. Acta Physica Sinica, 2010, 59(1): 536-540. doi: 10.7498/aps.59.536
    [14] Qiu Ming, Zhang Zhen-Hua, Deng Xiao-Qing. Analysis on transport sensitivity for a carbon atomic wire attached with side groups. Acta Physica Sinica, 2010, 59(6): 4162-4169. doi: 10.7498/aps.59.4162
    [15] Wang Zhi-Gang, Zhang Yang, Wen Yu-Hua, Zhu Zi-Zhong. First-principles calculation of structural stability and electronic properties of ZnO atomic chains. Acta Physica Sinica, 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
    [16] Zheng Xiao-Hong, Dai Zhen-Xiang, Wang Xian-Long, Zeng Zhi. Effects of B and N doping on spin polarized transport in graphene nanoribbons. Acta Physica Sinica, 2009, 58(13): 259-S265. doi: 10.7498/aps.58.259
    [17] Zheng Xin-Liang, Zheng Ji-Ming, Ren Zhao-Yu, Guo Ping, Tian Jin-Shou, Bai Jin-Tao. First-principles investigations on the electron transport of a TaSi3 cluster. Acta Physica Sinica, 2009, 58(8): 5709-5715. doi: 10.7498/aps.58.5709
    [18] Tang Xin-Xin, Luo Wen-Yun, Wang Chao-Zhuang, He Xin-Fu, Zha Yuan-Zi, Fan Sheng, Huang Xiao-Long, Wang Chuan-Shan. Non-ionizing energy loss of low energy proton in semiconductor materials Si and GaAs. Acta Physica Sinica, 2008, 57(2): 1266-1270. doi: 10.7498/aps.57.1266
    [19] Guo Li-Jun, Wüstenberg Jan-Peter, Oleksiy Andreyev, Bauer Michael, Aeschlimann Martin. Spin dynamics of GaAs(100) by two-photon photoemission. Acta Physica Sinica, 2005, 54(7): 3200-3205. doi: 10.7498/aps.54.3200
    [20] Wang Gui-Chun, Yuan Jian-Min. Structure and electronic properties of the low-dimensional copper systems. Acta Physica Sinica, 2003, 52(4): 970-977. doi: 10.7498/aps.52.970
Metrics
  • Abstract views:  4637
  • PDF Downloads:  226
  • Cited By: 0
Publishing process
  • Received Date:  29 October 2015
  • Accepted Date:  05 March 2016
  • Published Online:  05 May 2016

/

返回文章
返回