Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of intense laser irradiation on the electronic properties of 6H-SiC

Deng Fa-Ming

Citation:

Effect of intense laser irradiation on the electronic properties of 6H-SiC

Deng Fa-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • By using first-principle with pseudopotential method based on the density functional perturbation theory, in this paper we calculate the electronic properties of wurtzite 6H-SiC crystal under the strong laser irradiation and analyze the band structure and the density of states. Calculations are performed in the ABINIT code with using the generalized gradient approximation for the exchange-correlation energy. And the input variable tphysel is used to set up a physical temperature of electrons Te. The value of Te is set to simulate the corresponding electron temperature of the crystal when irradiated by intensive laser within an ultrafast time. The highly symmetric points selected in the Brillouin zone are along -A-H-K--M-L-H in the energy band calculations. After testing, we can always obtain a good convergence of the total energy when choosing 18 Hartree cut-off energy and 333 k-point grid. By optimizing the structure and then using the optimized equilibrium lattice constant, the structural parameters and the corresponding electronic properties of 6H-SiC in the different electron-temperature conditions are studied. First of all, when the electron temperature stays in a range between 0 eV and 5.0 eV, we choose 23 groups of different electron temperatures to respectively test the values of equilibrium lattice parameters a and c of 6H-SiC. Within a temperature range between 0 eV and 4.25 eV, we continue to test 20 groups of the electrical properties of 6H-SiC under different electron temperatures, calculating the forbidden bandwidths at different electron temperatures and analyzing the changes of the bottom of conduction band and the top of valence band as the electron temperature goes up. Meanwhile, taking for sample two groups of the band structures in ranges of 0-2 eV and 3-4 eV, we comparatively analyze the changes of the energy and position of the bottom of conduction band and the top of valence band with electron temperature. The calculation results indicate that the equilibrium lattice parameters a and c of 6H-SiC gradually increase as electron temperature Te goes up. With the electron temperature going up, the top of valence band still stays there, while the bottom of conduction band shifts to the location between M and L point as electron temperature increases, leading to the fact that 6H-SiC is still an indirect band-gap semiconductor in a range of 0-3.87 eV, and as electron temperature reaches 3.89 eV and even more, the crystal turns into a direct band-gap semiconductor. With Te rising constantly, the bottom of the conduction band and the top of valence band both move in the direction of high energy or low energy. When Te is in excess of 4.25 eV, the top of valence band crosses the Fermi level. When Te varies in a range of 0-2.75 eV, the forbidden bandwidth increases with temperature rising, and when Te varies in a range of 2.75-3 eV, the forbidden bandwidth decreases slowly, and when Te varies in a range of 3-4.25 eV, the forbidden bandwidth quickly reduces. This variation shows that the metallic character of 6H-SiC crystal increases with electron temperature Te rising. The total densities of states (DOS) are calculated at Te = 0 eV and 5 eV. The DOS figures indicate that 6H-SiC is a semiconductor and its energy gap equals 2.1 eV. At Te = 5 eV, the gap disappears, presenting metallic properties. This result shows that the crystal covalent bonds are weakened and metallic bonds are enhanced with temperature increasing and the crystal experiences the process of melting, entering into metallic state.
      Corresponding author: Deng Fa-Ming, dfm@scun.edu.cn
    • Funds: Project supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant Nos. 2014GB111001, 2014GB125000) and the Natural Science Foundation of the Education Department of Sichuan Province, China (Grant No. 16ZA0363).
    [1]

    van Vechten J A, Tsu R, Saris F W 1979 Phys. Lett. A 74 422

    [2]

    Shank C V, Yen R, Hirlimann C 1983 Phys. Rev. Lett. 50 454

    [3]

    Saeta P, Wang J, Siegal Y, Bloembergen N, Mazur E 1991 Phys. Rev. Lett. 67 1023

    [4]

    Larsson J, Heimann P A, Lindenberg A M, Schuck P J, Bucksbaum P H, Lee R W, Padmore H A, Wark J S, Falcone R W 1998 Appl. Phys. A: Mater. Sci. Proc. 66 587

    [5]

    Uteza O P, Gamaly E G, Rode A V, Samoc M, Luther-Davies B 2004 Phys. Rev. B 70 054108

    [6]

    Silvestrelli P L, Alavi A, Parrinello M, Frenkel D 1997 Phys. Rev. B 56 3806

    [7]

    Silvestrelli P L, Alavi A, Parrinello M, Frenkel D 1996 Phys. Rev. Lett. 7 3149

    [8]

    Wang M M, Gao T, Yu Y, Zeng X W 2012 Eur. Phys. J. Appl. Phys. 57 10104

    [9]

    Deng F M, Gao T, Shen Y H, Gong Y R 2015 Acta Phys. Sin. 64 046301 (in Chinese) [邓发明, 高涛, 沈艳红, 龚艳蓉 2015 物理学报 64 046301]

    [10]

    Recoules V, Clrouin J, Zrah G, Anglade P M, Mazevet S 2006 Phys. Rev. Lett. 96 055503

    [11]

    Zijlstra E S, Walkenhorst J, Gilfert C, Sippel C, Tws W, Garcia M E 2008 Appl. Phys. B 93 743

    [12]

    Shen Y H, Gao T, Wang M M 2013 Comput. Mater. Sci. 77 372

    [13]

    Shen Y H, Gao T, Wang M M 2013 Commun. Theor. Phys. Sci. 59 589

    [14]

    Matsunami H 2006 Microelectron. Eng. 83 2

    [15]

    Weitzel C E 1998 Mater. Sci. Formum. 907 264

    [16]

    Costa A K, Camargo Jr S S 2003 Surf. Coat. Technol. 163 176

    [17]

    Rottner K, Frischholz M, Myrtveit T, Mou D, Nordgren K, Henry A, Hallin C, Gustafsson U, Schoner A 1999 Mat. Sci. Eng. 61 330

    [18]

    Jiang Z Y, Xu X H, Wu H S, Zhang F Q, Jin Z H 2002 Acta Phys. Sin. 51 1586 (in Chinese) [姜振益, 许小红, 武海顺, 张富强, 金志浩 2002 物理学报 51 1586]

    [19]

    Wu X J, Jia T Q, Zhao F L, Huang M, Chen H X, Xu N S, Xu Z Z 2007 Acta Optica Sinica 27 0105 (in Chinese) [吴晓君,贾天卿,赵福利,黄敏,陈洪新,许宁生, 徐至展2007 光学学报 27 0105]

    [20]

    Wang S R, Liu Z L, Li J M, Wang L C, Xu P 2001 Chinese Journal of Semiconductors 22 507 (in Chinese) [王姝睿, 刘忠立, 李晋闽, 王良臣, 徐萍 2001 半导体学报 22 507]

    [21]

    Wang S R, Liu Z L, Liang G R, Liang X Q, Ma H Z 2001 Chinese Journal of Semiconductors 22 0755 (in Chinese) [王姝睿, 刘忠立, 梁桂荣, 梁秀芹, 马红芝 2001 半导体学报 22 0755]

    [22]

    Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Raty J Y, Allan D C 2002 Comput. Mater. Sci. 25 478

    [23]

    Troullier N, Martins J L 1990 Solid State Commun. 74 613

    [24]

    Camp P E, Doren V, Devreese J T 1986 Phys. Rev. B 34 1314

    [25]

    Kckell P, Wenzien B, Bechstedt F 1994 Phys. Rev. B 50 17037

    [26]

    Feng S Q, Zhao J L, Cheng X L 2013 J. Appl. Phys. 113 023301

    [27]

    Thompson M O, Galvin G J, Mayer J W, Peercy P S, Poate J M, Jacobson D C, Cullis A G, Chew N G 1984 Phys. Rev. Lett. 52 2360

    [28]

    Poate J M, Brown W L 1982 Phys. Today 35 24

    [29]

    Wessels B W, Gatos H C 1977 Phys. Solids 38 345

    [30]

    Xie C K, Xu P S, Xu F Q 2003 Phys. B 336 284

    [31]

    Gromov G G, Kapaev V V, Kopaev Y V, Kopaev Y V, Rudenko K V 1988 Zh. Eksp. Teor. Fiz. 94 101

    [32]

    Sokolowski-Tinten K, Bialkowski J, von der Linde D 1995 Phys. Rev. B 51 14186

  • [1]

    van Vechten J A, Tsu R, Saris F W 1979 Phys. Lett. A 74 422

    [2]

    Shank C V, Yen R, Hirlimann C 1983 Phys. Rev. Lett. 50 454

    [3]

    Saeta P, Wang J, Siegal Y, Bloembergen N, Mazur E 1991 Phys. Rev. Lett. 67 1023

    [4]

    Larsson J, Heimann P A, Lindenberg A M, Schuck P J, Bucksbaum P H, Lee R W, Padmore H A, Wark J S, Falcone R W 1998 Appl. Phys. A: Mater. Sci. Proc. 66 587

    [5]

    Uteza O P, Gamaly E G, Rode A V, Samoc M, Luther-Davies B 2004 Phys. Rev. B 70 054108

    [6]

    Silvestrelli P L, Alavi A, Parrinello M, Frenkel D 1997 Phys. Rev. B 56 3806

    [7]

    Silvestrelli P L, Alavi A, Parrinello M, Frenkel D 1996 Phys. Rev. Lett. 7 3149

    [8]

    Wang M M, Gao T, Yu Y, Zeng X W 2012 Eur. Phys. J. Appl. Phys. 57 10104

    [9]

    Deng F M, Gao T, Shen Y H, Gong Y R 2015 Acta Phys. Sin. 64 046301 (in Chinese) [邓发明, 高涛, 沈艳红, 龚艳蓉 2015 物理学报 64 046301]

    [10]

    Recoules V, Clrouin J, Zrah G, Anglade P M, Mazevet S 2006 Phys. Rev. Lett. 96 055503

    [11]

    Zijlstra E S, Walkenhorst J, Gilfert C, Sippel C, Tws W, Garcia M E 2008 Appl. Phys. B 93 743

    [12]

    Shen Y H, Gao T, Wang M M 2013 Comput. Mater. Sci. 77 372

    [13]

    Shen Y H, Gao T, Wang M M 2013 Commun. Theor. Phys. Sci. 59 589

    [14]

    Matsunami H 2006 Microelectron. Eng. 83 2

    [15]

    Weitzel C E 1998 Mater. Sci. Formum. 907 264

    [16]

    Costa A K, Camargo Jr S S 2003 Surf. Coat. Technol. 163 176

    [17]

    Rottner K, Frischholz M, Myrtveit T, Mou D, Nordgren K, Henry A, Hallin C, Gustafsson U, Schoner A 1999 Mat. Sci. Eng. 61 330

    [18]

    Jiang Z Y, Xu X H, Wu H S, Zhang F Q, Jin Z H 2002 Acta Phys. Sin. 51 1586 (in Chinese) [姜振益, 许小红, 武海顺, 张富强, 金志浩 2002 物理学报 51 1586]

    [19]

    Wu X J, Jia T Q, Zhao F L, Huang M, Chen H X, Xu N S, Xu Z Z 2007 Acta Optica Sinica 27 0105 (in Chinese) [吴晓君,贾天卿,赵福利,黄敏,陈洪新,许宁生, 徐至展2007 光学学报 27 0105]

    [20]

    Wang S R, Liu Z L, Li J M, Wang L C, Xu P 2001 Chinese Journal of Semiconductors 22 507 (in Chinese) [王姝睿, 刘忠立, 李晋闽, 王良臣, 徐萍 2001 半导体学报 22 507]

    [21]

    Wang S R, Liu Z L, Liang G R, Liang X Q, Ma H Z 2001 Chinese Journal of Semiconductors 22 0755 (in Chinese) [王姝睿, 刘忠立, 梁桂荣, 梁秀芹, 马红芝 2001 半导体学报 22 0755]

    [22]

    Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Raty J Y, Allan D C 2002 Comput. Mater. Sci. 25 478

    [23]

    Troullier N, Martins J L 1990 Solid State Commun. 74 613

    [24]

    Camp P E, Doren V, Devreese J T 1986 Phys. Rev. B 34 1314

    [25]

    Kckell P, Wenzien B, Bechstedt F 1994 Phys. Rev. B 50 17037

    [26]

    Feng S Q, Zhao J L, Cheng X L 2013 J. Appl. Phys. 113 023301

    [27]

    Thompson M O, Galvin G J, Mayer J W, Peercy P S, Poate J M, Jacobson D C, Cullis A G, Chew N G 1984 Phys. Rev. Lett. 52 2360

    [28]

    Poate J M, Brown W L 1982 Phys. Today 35 24

    [29]

    Wessels B W, Gatos H C 1977 Phys. Solids 38 345

    [30]

    Xie C K, Xu P S, Xu F Q 2003 Phys. B 336 284

    [31]

    Gromov G G, Kapaev V V, Kopaev Y V, Kopaev Y V, Rudenko K V 1988 Zh. Eksp. Teor. Fiz. 94 101

    [32]

    Sokolowski-Tinten K, Bialkowski J, von der Linde D 1995 Phys. Rev. B 51 14186

  • [1] Li Jing-Hui, Cao Sheng-Guo, Han Jia-Ning, Li Zhan-Hai, Zhang Zhen-Hua. Electronic properties and modulation effects on edge-modified GeS2 nanoribbons. Acta Physica Sinica, 2024, 73(5): 056102. doi: 10.7498/aps.73.20231670
    [2] Xu Yong-Hu, Deng Xiao-Qing, Sun Lin, Fan Zhi-Qiang, Zhang Zhen-Hua. Strain engineering of electronic structure and mechanical switch device for edge modified Net-Y nanoribbons. Acta Physica Sinica, 2022, 71(4): 046102. doi: 10.7498/aps.71.20211748
    [3] Strain?Engineering of Electronic Structure and Mechanical Switch Device for Edge Modified Net-Y Nanoribbons. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211748
    [4] Zhang Hua-Lin, He Xin, Zhang Zhen-Hua. Magneto-electronic property in zigzag phosphorene nanoribbons doped with transition metal atom. Acta Physica Sinica, 2021, 70(5): 056101. doi: 10.7498/aps.70.20201408
    [5] Wang Dan, Zou Juan, Tang Li-Ming. Stability and electronic structure of hydrogenated two-dimensional transition metal dichalcogenides: First-principles study. Acta Physica Sinica, 2019, 68(3): 037102. doi: 10.7498/aps.68.20181597
    [6] Liu Ya-Nan, Lu Jun-Zhe, Zhu Heng-Jiang, Tang Yu-Chao, Lin Xiang, Liu Jing, Wang Ting. Structural derivative and electronic properties of zigzag carbon nanotubes. Acta Physica Sinica, 2017, 66(9): 093601. doi: 10.7498/aps.66.093601
    [7] Deng Fa-Ming, Gao Tao, Shen Yan-Hong, Gong Yan-Rong. Effect of intense laser irradiation on the structural stability of 3C-SiC. Acta Physica Sinica, 2015, 64(4): 046301. doi: 10.7498/aps.64.046301
    [8] Deng Fa-Ming. Effect of intense laser irradiation on the electronic properties of 2H-SiC. Acta Physica Sinica, 2015, 64(22): 227101. doi: 10.7498/aps.64.227101
    [9] Du Yang-Yang, Li Bing-Sheng, Wang Zhi-Guang, Sun Jian-Rong, Yao Cun-Feng, Chang Hai-Long, Pang Li-Long, Zhu Ya-Bin, Cui Ming-Huan, Zhang Hong-Peng, Li Yuan-Fei, Wang Ji, Zhu Hui-Ping, Song Peng, Wang Dong. Spectra study of He-irradiation induced defects in 6H-SiC. Acta Physica Sinica, 2014, 63(21): 216101. doi: 10.7498/aps.63.216101
    [10] Zeng Yong-Chang, Tian Wen, Zhang Zhen-Hua. Electronic properties of graphene nanoribbons with periodical nanoholes passivated by oxygen. Acta Physica Sinica, 2013, 62(23): 236102. doi: 10.7498/aps.62.236102
    [11] Li Jun, Zhang Zhen-Hua, Wang Chen-Zhi, Deng Xiao-Qing, Fan Zhi-Qiang. Rolling effects on electronic characteristics for graphene nanoribbons. Acta Physica Sinica, 2013, 62(5): 056103. doi: 10.7498/aps.62.056103
    [12] Yun Zhi-Qiang, Wei Ru-Sheng, Li Wei, Luo Wei-Wei, Wu Qiang, Xu Xian-Gang, Zhang Xin-Zheng. Sub-diffraction-limit fabrication of 6H-SiC with femtosecond laser. Acta Physica Sinica, 2013, 62(6): 068101. doi: 10.7498/aps.62.068101
    [13] Li Li-Min, Pan Hai-Bin, Yan Wen-Sheng, Xu Peng-Shou, Wei Shi-Qiang, Chen Xiu-Fang, Xu Xian-Gang, Kang Chao-Yang, Tang Jun. Preparation of graphene on different-polarity 6H-SiC substrates and the study of their electronic structures. Acta Physica Sinica, 2011, 60(4): 047302. doi: 10.7498/aps.60.047302
    [14] Qin Xi-Feng, Wang Feng-Xiang, Liang Yi, Fu Gang, Zhao You-Mei. Investigation of the lateral spread of Er ions implanted in 6H-SiC. Acta Physica Sinica, 2010, 59(9): 6390-6393. doi: 10.7498/aps.59.6390
    [15] Zhang Hong-Hua, Zhang Chong-Hong, Li Bing-Sheng, Zhou Li-Hong, Yang Yi-Tao, Fu Yun-Chong. Optical properties revealing annealing behavior of high-temperature He-implantation induced defects in silicon carbide. Acta Physica Sinica, 2009, 58(5): 3302-3308. doi: 10.7498/aps.58.3302
    [16] Liu Shi-Rong, Huang Wei-Qi, Qin Zhao-Jian. Germanium quantum dots formed by oxidation of SiGe alloys. Acta Physica Sinica, 2006, 55(5): 2488-2491. doi: 10.7498/aps.55.2488
    [17] Zeng Zhen-Hua, Deng Hui-Qiu, Li Wei-Xue, Hu Wang-Yu. Density function theory calculation of oxygen adsorption on Au(111) surface. Acta Physica Sinica, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [18] Zhou Yong-Hua, Zhang Yi-Men, Zhang Yu-Ming, Meng Xiang-Zhi. Simulation and analysis of 6H-SiC pn junction ultraviolet photodetector. Acta Physica Sinica, 2004, 53(11): 3710-3715. doi: 10.7498/aps.53.3710
    [19] SHANG YE-CHUN, ZHANG YI-MEN, ZHANG YU-MING. MONTE CARLO STUDY ON INTERFACE ROUGHNESS DEPENDENCE OF ELECTRON MOBILITY IN 6H-SiC INVERSION LAYERS. Acta Physica Sinica, 2001, 50(7): 1350-1354. doi: 10.7498/aps.50.1350
    [20] SHANG YE-CHUN, ZHANG YI-MEN, ZHANG YU-MING. MONTE CARLO SIMULATION OF ELECTRON TRANSPORT IN 6H-SiC. Acta Physica Sinica, 2000, 49(9): 1786-1791. doi: 10.7498/aps.49.1786
Metrics
  • Abstract views:  5113
  • PDF Downloads:  157
  • Cited By: 0
Publishing process
  • Received Date:  16 January 2016
  • Accepted Date:  15 February 2016
  • Published Online:  05 May 2016

/

返回文章
返回