Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Excitation processes in experimental photoionized plasmas

Han Bo Wang Fei-Lu Liang Gui-Yun Zhao Gang

Citation:

Excitation processes in experimental photoionized plasmas

Han Bo, Wang Fei-Lu, Liang Gui-Yun, Zhao Gang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Photoionized plasmas widely exist nearby strong radiative sources in the universe. With the development of the high energy density facilities, photoionized plasmas related to astrophysical objects are generated in laboratories accordingly. RCF (radiative collisional code based on the flexible atomic code) is a theoretical model applied to steady-state photoionized plasmas. Its rate equation includes five groups of mutually inverse atomic processes, which are spontaneous decay and photoexcitation, electron impact excitation and deexcitation, photoionization and radiative recombination, electron impact ionization and three body recombination, autoionization and dielectronic capture. All of the atomic data are calculated by FAC (the flexible atomic code), and with four input parameters, RCF can calculate the charge distribution and emission spectrum of the plasma. RCF has well simulated the charge state distribution of a photoionizing Fe experiment on Z-facility and the measured spectrum of photoionizing Si experiment on GEKKO-XII laser facility. According to the simulation results, the importance of photoexcitation and electron impact excitation processes in the two photoionization experiments is discussed. In the photoionizing Fe experiment condition, high energy photons not only ionize the ions by photoionization directly, but also excite the ions to autoionizing levels, ionizing the ions indirectly. What is more, far from ionizing the ions, electrons even suppress the ionization of the plasma by exciting the ions to levels with small ionization cross sections. In the photoionizing Si experiment condition, because of high photoexcitation rate, strong resonance line of He-like ion and some Li-like ion lines, which have similar spontaneous decay rates as the resonance line, are emitted. Although the intercombination line of He-like ion has lower spontaneous decay rate than the resonance lines, strong recombination makes them have comparable strengthes. Electron impact excitation can influence the line ratio of He-like ion lines by affecting the distribution of 1s2l (l=s,p) levels.
      Corresponding author: Wang Fei-Lu, wfl@bao.ac.cn;gzhao@bao.ac.cn ; Zhao Gang, wfl@bao.ac.cn;gzhao@bao.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CBA01503), and the National Natural Science Foundation of China (Grant Nos. 11573040, 11135012, 11273032).
    [1]

    Fujioka S, Takabe H, Yamamoto N, Salzmann D, Wang F L, Nishimura H, Li Y T, Dong Q L, Wang S J, Zhang Y, Rhee Y J, Lee Y W, Han J M, Tanabe M, Fujiwara T, Nakabayashi Y, Zhao G, Zhang J, Mima K 2009 Nature Phys. 5 821

    [2]

    Remington B A, Drake R P, Ryutov D D 2006 Rev. Morn. Phys. 78 755

    [3]

    Foord M E, Heeter R F, van Hoof P A, Thoe R S, Bailey J E, Cuneo M E, Chung H K, Liedahl D A, Fournier K B, Chandler G A, Jonauskas V, Kisielius R, Mix L P, Ramsbottom C, Springer P T, Keenan F P, Rose S J, Goldstein W H 2004 Phys. Rev. Lett. 93 055002

    [4]

    Foord M E, Heeter R F, Chung H K, van Hoof P A, Bailey J E, Cuneo M E, Liedahl D A, Fournier K B, Jonauskas V, Kisielius R, Ramsbottom C, Springer P T, Keenan F P, Rose S J, Goldstein W H 2006 J. Quant. Spec. Radiat. Transf. 99 712

    [5]

    Rose S J 1998 J. Phys. B: Atomic Molecular Physics 31 2129

    [6]

    Djaoui A, Rose S J 1992 J. Phys. B: Atomic Molecular Physics 25 2745

    [7]

    Rose S J, van Hoof P A M, Jonauskas V, Keenan F P, Kisielius R, Ramsbottom C, Foord M E, Heeter R F, Springer P T 2004 J. Phys. B: Atomic Molecular Physics 37 L337

    [8]

    Chung H K, Morgan W L, Lee R W 2003 J. Quant. Spec. Radiat. Transf. 81 107

    [9]

    Salzmann D, Takabe H, Wang F L, Zhao G 2009 ApJ 742 52

    [10]

    Wang F L, Salzmann D, Zhao G, Takabe H 2009 ApJ 742 53

    [11]

    Ferland G J, Korista K T, Verner D A, Ferguson J W, Kingdon J B, Verner E M 1998 Publ. Astron. Soc. Pac. 110 761

    [12]

    Kallman T R, Liedahl D, Osterheld A, Goldstein W, Kahn S 1996 ApJ, 465 994

    [13]

    Kallman T, Bautista M 2001 ApJS 133 221

    [14]

    Kallman T R, Palmeri P, Bautista M A, Mendoza C, Krolik J H 2004 ApJS 155 675

    [15]

    Bautista M A, Kallman T R 2001 ApJS 134 139

    [16]

    Boroson B, Vrtilek S D, Kallman T, Corcoran M 2003 ApJ 592 516

    [17]

    Liang G Y, Li F, Wang F L, Wu Y, Zhong J Y, Zhao G 2014 ApJ 783 124

    [18]

    Kallman T, Evans D A, Marshall H, Canizares C, Longinotti A, Nowak M, Schulz N 2014 ApJ 780 121

    [19]

    Porquet D, Dubau J 2000 AAS 143, 495

    [20]

    Han B, Wang F L, Salzmann D, Zhao G 2015 Publ. Astron. Soc. Japan 67 29

    [21]

    Salzmann D 1998 Atomic Physics in Hot Plasmas (New York: Oxford University Press)

    [22]

    Gu M F 2008 Can. J. Phys. 86 675

    [23]

    Schulz N, Canizares C R, Lee J C, Sako M 2002 ApJ 564 L21

    [24]

    Pradhan A K, Nahar S N 2011 Atomic Astrophysics and Spectroscopy (New York: Cambridge University Prtess)

    [25]

    Wang F L, Salzmann D, Zhao G, Takabe H, Fujioka S, Yamamoto N, Nishimura H, Zhang J 2009 ApJ 706 592

    [26]

    Bao L H, Wu Z Q, Duan B, Ding Y K, Yan J 2011 Phys. Plasmas 18 023301

  • [1]

    Fujioka S, Takabe H, Yamamoto N, Salzmann D, Wang F L, Nishimura H, Li Y T, Dong Q L, Wang S J, Zhang Y, Rhee Y J, Lee Y W, Han J M, Tanabe M, Fujiwara T, Nakabayashi Y, Zhao G, Zhang J, Mima K 2009 Nature Phys. 5 821

    [2]

    Remington B A, Drake R P, Ryutov D D 2006 Rev. Morn. Phys. 78 755

    [3]

    Foord M E, Heeter R F, van Hoof P A, Thoe R S, Bailey J E, Cuneo M E, Chung H K, Liedahl D A, Fournier K B, Chandler G A, Jonauskas V, Kisielius R, Mix L P, Ramsbottom C, Springer P T, Keenan F P, Rose S J, Goldstein W H 2004 Phys. Rev. Lett. 93 055002

    [4]

    Foord M E, Heeter R F, Chung H K, van Hoof P A, Bailey J E, Cuneo M E, Liedahl D A, Fournier K B, Jonauskas V, Kisielius R, Ramsbottom C, Springer P T, Keenan F P, Rose S J, Goldstein W H 2006 J. Quant. Spec. Radiat. Transf. 99 712

    [5]

    Rose S J 1998 J. Phys. B: Atomic Molecular Physics 31 2129

    [6]

    Djaoui A, Rose S J 1992 J. Phys. B: Atomic Molecular Physics 25 2745

    [7]

    Rose S J, van Hoof P A M, Jonauskas V, Keenan F P, Kisielius R, Ramsbottom C, Foord M E, Heeter R F, Springer P T 2004 J. Phys. B: Atomic Molecular Physics 37 L337

    [8]

    Chung H K, Morgan W L, Lee R W 2003 J. Quant. Spec. Radiat. Transf. 81 107

    [9]

    Salzmann D, Takabe H, Wang F L, Zhao G 2009 ApJ 742 52

    [10]

    Wang F L, Salzmann D, Zhao G, Takabe H 2009 ApJ 742 53

    [11]

    Ferland G J, Korista K T, Verner D A, Ferguson J W, Kingdon J B, Verner E M 1998 Publ. Astron. Soc. Pac. 110 761

    [12]

    Kallman T R, Liedahl D, Osterheld A, Goldstein W, Kahn S 1996 ApJ, 465 994

    [13]

    Kallman T, Bautista M 2001 ApJS 133 221

    [14]

    Kallman T R, Palmeri P, Bautista M A, Mendoza C, Krolik J H 2004 ApJS 155 675

    [15]

    Bautista M A, Kallman T R 2001 ApJS 134 139

    [16]

    Boroson B, Vrtilek S D, Kallman T, Corcoran M 2003 ApJ 592 516

    [17]

    Liang G Y, Li F, Wang F L, Wu Y, Zhong J Y, Zhao G 2014 ApJ 783 124

    [18]

    Kallman T, Evans D A, Marshall H, Canizares C, Longinotti A, Nowak M, Schulz N 2014 ApJ 780 121

    [19]

    Porquet D, Dubau J 2000 AAS 143, 495

    [20]

    Han B, Wang F L, Salzmann D, Zhao G 2015 Publ. Astron. Soc. Japan 67 29

    [21]

    Salzmann D 1998 Atomic Physics in Hot Plasmas (New York: Oxford University Press)

    [22]

    Gu M F 2008 Can. J. Phys. 86 675

    [23]

    Schulz N, Canizares C R, Lee J C, Sako M 2002 ApJ 564 L21

    [24]

    Pradhan A K, Nahar S N 2011 Atomic Astrophysics and Spectroscopy (New York: Cambridge University Prtess)

    [25]

    Wang F L, Salzmann D, Zhao G, Takabe H, Fujioka S, Yamamoto N, Nishimura H, Zhang J 2009 ApJ 706 592

    [26]

    Bao L H, Wu Z Q, Duan B, Ding Y K, Yan J 2011 Phys. Plasmas 18 023301

  • [1] Chen Ze-Yu, Peng Yu-Bin, Wang Rui, He Yong-Ning, Cui Wan-Zhao. Reaction dynamic process of low pressure discharge plasma in microwave resonant cavity. Acta Physica Sinica, 2022, 71(24): 240702. doi: 10.7498/aps.71.20221385
    [2] Ji Jian-Wei, Kazuya Yamamura, Deng Hui. Plasma-assisted polishing for atomic surface fabrication of single crystal SiC. Acta Physica Sinica, 2021, 70(6): 068102. doi: 10.7498/aps.70.20202014
    [3] Liu Yu-Feng, Zhang Lian-Shui, He Wan-Lin, Huang Yu, Du Yan-Jun, Lan Li-Juan, Ding Yan-Jun, Peng Zhi-Min. Spectroscopic study on the laser-induced breakdown flame plasma. Acta Physica Sinica, 2015, 64(4): 045202. doi: 10.7498/aps.64.045202
    [4] Li Shi-Chun, Chen Gen-Yu, Zhou Cong, Chen Xiao-Feng, Zhou Yu. Plasma inside and outside keyhole during 10 kW level fiber laser welding. Acta Physica Sinica, 2014, 63(10): 104212. doi: 10.7498/aps.63.104212
    [5] Liu Yu-Feng, Ding Yan-Jun, Peng Zhi-Min, Huang Yu, Du Yan-Jun. Spectroscopic study on the time evolution behaviors of the laser-induced breakdown air plasma. Acta Physica Sinica, 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [6] Chen Li-Juan, Lu Shi-Ping, Mo Jia-Qi. The periodic orbits of sport model of plasmas particle in the process of magnetosphere-ionosphere coupling. Acta Physica Sinica, 2013, 62(9): 090201. doi: 10.7498/aps.62.090201
    [7] Chen Xiang-Rong, Fu Zhi-Jian, Chen Qi-Feng. Transport properties of titanium and silver plasmas in the region of partial ionization. Acta Physica Sinica, 2011, 60(5): 055202. doi: 10.7498/aps.60.055202
    [8] Gao Xun, Song Xiao-Wei, Guo Kai-Min, Tao Hai-Yan, Lin Jing-Quan. Optical emission spectra of Si plasma induced by femtosecond laser pulse. Acta Physica Sinica, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [9] Xia Zhi-Lin, Guo Pei-Tao, Xue Yi-Yu, Huang Cai-Hua, Li Zhan-Wang. Investigation of the plasma bursting process in short pulsed laser induced film damage. Acta Physica Sinica, 2010, 59(5): 3523-3530. doi: 10.7498/aps.59.3523
    [10] Wang Wei, Jiang Gang. Study on rate coefficient of dielectronic recombination in dense plasma based on doubly excited state. Acta Physica Sinica, 2010, 59(11): 7815-7823. doi: 10.7498/aps.59.7815
    [11] Zhao Hong-Ying, Dai Chang-Jian, Guan Feng. Two-step resonant photoionization spectra of Sm atom. Acta Physica Sinica, 2009, 58(1): 215-222. doi: 10.7498/aps.58.215
    [12] Zhang Fa-Rong, Zhang Xiao-Dan, Amanatides E., Mataras D., Zhao Jing, Zhao Ying. Study on the optical and electrical properties of plasma for the deposition of microcrystalline silicon. Acta Physica Sinica, 2008, 57(5): 3022-3026. doi: 10.7498/aps.57.3022
    [13] Zhao Jian-Ming, Zhang Lin-Jie, Li Chang-Yong, Jia Suo-Tang. The transformation of ultra-cold Rydberg atom to plasma. Acta Physica Sinica, 2008, 57(5): 2895-2898. doi: 10.7498/aps.57.2895
    [14] Li Han-Ming, Li Gang, Li Ying-Jun, Li Yu-Tong, Zhang Yi, Cheng Tao, Nie Chao-Qun, Zhang Jie. The characteristics of the spectrum emitted from dielectric barrier-discharge plasmas. Acta Physica Sinica, 2008, 57(2): 969-974. doi: 10.7498/aps.57.969
    [15] Yang Zhi-Hu, Zhang Xiao-An, Zhao Yong-Tao, Yin Wei-Wei, Li Ning-Xi. Precision measurement of excited spectra of oxygen ions. Acta Physica Sinica, 2006, 55(9): 4520-4527. doi: 10.7498/aps.55.4520
    [16] Zhang Ting, Ding Bo-Jiang. Simulation of effect of atomic process on poloidal CXRS measurement. Acta Physica Sinica, 2006, 55(3): 1534-1538. doi: 10.7498/aps.55.1534
    [17] Zhang Qiu-Ju, Sheng Zheng-Ming, Zhang Jie. Solitons formed by ultrashort laser pulses propagating in a plasma. Acta Physica Sinica, 2004, 53(3): 798-802. doi: 10.7498/aps.53.798
    [18] Zhang Xiao-An, Zhao Yong-Tao, Li Fu-Li, Yang Zhi-Hu, Xiao Guo-Qing, Zhan Wen-Long. Atomic and ionic light emission spectra of dipole transition and forbidden transition induced by the impact of 126Xe30+ on Ni solid surface. Acta Physica Sinica, 2004, 53(10): 3341-3346. doi: 10.7498/aps.53.3341
    [19] Zhang Duan-Ming, Guan Li, Li Zhi-Hua, Zhong Zhi-Cheng, Hou Si-Pu, Yang Feng-Xia, Zheng Ke-Yu. Study on the evolvement of plasma generated by pulsed laser deposition of thin film. Acta Physica Sinica, 2003, 52(1): 242-246. doi: 10.7498/aps.52.242
    [20] Lu Xin-Pei, Pan Yuan, Zhang Han-Hong. . Acta Physica Sinica, 2002, 51(8): 1768-1772. doi: 10.7498/aps.51.1768
Metrics
  • Abstract views:  6304
  • PDF Downloads:  213
  • Cited By: 0
Publishing process
  • Received Date:  21 January 2016
  • Accepted Date:  02 March 2016
  • Published Online:  05 June 2016

/

返回文章
返回