Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Observation of critical behavior of ultra-cold Bose gas in a magnetic trap

Wang Bing Zhu Qiang Xiong De-Zhi Lü Bao-Long

Citation:

Observation of critical behavior of ultra-cold Bose gas in a magnetic trap

Wang Bing, Zhu Qiang, Xiong De-Zhi, Lü Bao-Long
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Quantum criticality emerges when the collective fluctuations of matter undergo a continuous phase transition at zero temperature and has been a research focus in conventional condensed-matter physics over the past several decades. In the quantum critical regime, the exotic and universal properties are expected. These properties are independent of the microscopic details of the system, but depend only on a few general properties of the system, such as its dimensionality and the symmetry of the order parameter. The research of quantum criticality can not only help us to understand quantum phase transitions, but also provide a novel route to new material design and discovery.Ultracold bosonic gases have provided a clean system for studying the quantum critical phenomena. The critical behavior of a weakly interacting three-dimensional (3D) Bose gas should be identical to that of 4He at the superfluid transition, which belongs to the 3D XY universality class. From the normal fluid to the superfluid, the system undergoes a phase transition from completely disorder to long-range order, while in the vicinity of the phase transition point, the system parameters will show some singularity characteristics. In this paper, we observe the critical behavior of 87Rb Bose gas in a quadrupole-Ioffe configuration (QUIC) trap near the phase transition temperature Tc. A novel singularity behavior of the full width at half maximum of momentum distribution (FWHMMD) of atomic gas is discovered in the experiment. Prior to our experiment, we prepare a sample with 7.8105 87Rb atoms in the 5S1/2 |F=2, mF=2 state. Then the sample is held in a QUIC trap for a presetting period of time to control the temperature of atom sample precisely. During the holding time, the sample is heated up due to background gas collisions or fluctuations of the trap potential. In our experiment, the heating rate is deduced to be 0.3480.078 nK/ms from the absorption image. For a bosonic gas in a harmonic trap, critical gas can only cover a finite-size region due to a spatially varying density. We define the finite-size region as a critical region determined by the Ginzburg criterion. Then the FWHMMDs of atomic gas in the critical region are measured for different temperatures near the critical point. To this aim, we first extract the momentum distribution of atomic gas from the absorption image of the atomic clouds released from the QIUC trap after free expansion. Thus momentum distribution of atomic gas in the critical region can be extracted from the absorption image by subtracting the momentum distribution of thermal gas outside the critical region. According to the statistical results of the FWHMMD at different temperatures, we find that the FWHMMD suddenly reduces, thus revealing a very notable singularity behavior when the temperature is very close to the phase transition temperature Tc.
      Corresponding author: Xiong De-Zhi, wssxdz@wipm.ac.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11104322).
    [1]

    Huang K 1987 Statistical Mechanics (New York: John Wiley Sons) pp392-415

    [2]

    Coleman P, Schofield A J 2005 Nature 433 226

    [3]

    Sachdev S 2003 Rev. Mod. Phys. 75 913

    [4]

    Li Z, Zhou R, Zheng G Q {2015 Acta Phys. Sin. 64 217404 (in Chinese) [李政, 周睿, 郑国庆 2015 物理学报 64 217404]

    [5]

    Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039

    [6]

    Gasparini F M, Kimball M O, Mooney K P, Diaz-Avila M 2008 Rev. Mod. Phys. 80 1009

    [7]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [8]

    Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969

    [9]

    Bradley C C, Sacket C A, Tollett J J, Hulet R G 1995 Phys. Rev. Lett. 75 1687

    [10]

    Khl M, Moritz H, Stferle T, Schori C, Esslinger T 2005 J. Low. Temp. Phys. 138 635

    [11]

    Polkovnikov A, Altman E, Demler E 2006 Proc. Natl. Acad. Sci. U.S.A 103 6125

    [12]

    Hadzibabic Z, Kruger P, Cheneau M, Battelier B, Dalibard J 2006 Nature 441 1118

    [13]

    Bezett A, Blakie P B 2009 Phys. Rev. A 79 033611

    [14]

    Donner T, Ritter S, Bourdel T, Ottl A, Khl M, Esslinger T 2007 Science 315 1556

    [15]

    Xiong W, Zhou X J, Yue X G, Chen X Z, Wu B, Xiong H W 2013 Laser Phys. Lett. 10 125502

    [16]

    Sondhi S L, Girvin S M, Carini J P, Shahar D 1997 Rev. Mod. Phys. 69 315

    [17]

    Buckingham M J, Fairbank W M 1961 Progress in Low Temperature Physics (Vol. 3) (Amserdam: North-Holland) pp80-122

    [18]

    Feng M, Zhong Y P, Liu T, Yan L L, Yang W L, Twamley J, Wang H 2015 Nat. Commun. 6 7111

    [19]

    Damle K, Senthil T, Majumdar S N, Sachdev S 1996 Euro. Phys. Lett. 36 7

    [20]

    Giorgini S, Pitaevskii L P, Stringari S 1996 Phys. Rev. A 54 R4633

    [21]

    Pethick C J, Smith H 2008 Bose-Einstein Condensation in Dilute Gases (2nd Ed.) (New York: Cambridge University Press) pp21-28

    [22]

    L B L, Tan X Z, Wang B, Cao L J, Xiong H W 2010 Phys. Rev. A 82 053629

    [23]

    Mewes M O, Andrews M R, van Druten N J, Kurn D M, Durfee D S, Ketterle W 1996 Phys. Rev. Lett. 77 416

    [24]

    Ma S K 2000 Modern Theory of Critical Phenomena (New York: Westview Press) pp16-32

  • [1]

    Huang K 1987 Statistical Mechanics (New York: John Wiley Sons) pp392-415

    [2]

    Coleman P, Schofield A J 2005 Nature 433 226

    [3]

    Sachdev S 2003 Rev. Mod. Phys. 75 913

    [4]

    Li Z, Zhou R, Zheng G Q {2015 Acta Phys. Sin. 64 217404 (in Chinese) [李政, 周睿, 郑国庆 2015 物理学报 64 217404]

    [5]

    Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039

    [6]

    Gasparini F M, Kimball M O, Mooney K P, Diaz-Avila M 2008 Rev. Mod. Phys. 80 1009

    [7]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [8]

    Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969

    [9]

    Bradley C C, Sacket C A, Tollett J J, Hulet R G 1995 Phys. Rev. Lett. 75 1687

    [10]

    Khl M, Moritz H, Stferle T, Schori C, Esslinger T 2005 J. Low. Temp. Phys. 138 635

    [11]

    Polkovnikov A, Altman E, Demler E 2006 Proc. Natl. Acad. Sci. U.S.A 103 6125

    [12]

    Hadzibabic Z, Kruger P, Cheneau M, Battelier B, Dalibard J 2006 Nature 441 1118

    [13]

    Bezett A, Blakie P B 2009 Phys. Rev. A 79 033611

    [14]

    Donner T, Ritter S, Bourdel T, Ottl A, Khl M, Esslinger T 2007 Science 315 1556

    [15]

    Xiong W, Zhou X J, Yue X G, Chen X Z, Wu B, Xiong H W 2013 Laser Phys. Lett. 10 125502

    [16]

    Sondhi S L, Girvin S M, Carini J P, Shahar D 1997 Rev. Mod. Phys. 69 315

    [17]

    Buckingham M J, Fairbank W M 1961 Progress in Low Temperature Physics (Vol. 3) (Amserdam: North-Holland) pp80-122

    [18]

    Feng M, Zhong Y P, Liu T, Yan L L, Yang W L, Twamley J, Wang H 2015 Nat. Commun. 6 7111

    [19]

    Damle K, Senthil T, Majumdar S N, Sachdev S 1996 Euro. Phys. Lett. 36 7

    [20]

    Giorgini S, Pitaevskii L P, Stringari S 1996 Phys. Rev. A 54 R4633

    [21]

    Pethick C J, Smith H 2008 Bose-Einstein Condensation in Dilute Gases (2nd Ed.) (New York: Cambridge University Press) pp21-28

    [22]

    L B L, Tan X Z, Wang B, Cao L J, Xiong H W 2010 Phys. Rev. A 82 053629

    [23]

    Mewes M O, Andrews M R, van Druten N J, Kurn D M, Durfee D S, Ketterle W 1996 Phys. Rev. Lett. 77 416

    [24]

    Ma S K 2000 Modern Theory of Critical Phenomena (New York: Westview Press) pp16-32

  • [1] Zhang Peng, Piao Hong-Guang, Zhang Ying-De, Huang Jiao-Hong. Research progress of critical behaviors and magnetocaloric effects of perovskite manganites. Acta Physica Sinica, 2021, 70(15): 157501. doi: 10.7498/aps.70.20210097
    [2] Yuan Yi, Li Ying-Long, Wang Qiang, Liu Tie, Gao Peng-Fei, He Ji-Cheng. Influence of high magnetic fields on phase transition and solidification microstructure in Mn-Sb peritectic alloy. Acta Physica Sinica, 2013, 62(20): 208106. doi: 10.7498/aps.62.208106
    [3] Gao Shao-Hua, Wang Yu-Xia, Wang Hong-Wei, Yuan Shuai. Research on the conductivity of KAg4 I5-AgI composite. Acta Physica Sinica, 2011, 60(8): 086601. doi: 10.7498/aps.60.086601
    [4] Zhang Chun-Zu, Zhang Ying, Zhou Zhi-Dong. Size effect on phase transition temperature of epitaxial ferroelectric films. Acta Physica Sinica, 2010, 59(9): 6620-6625. doi: 10.7498/aps.59.6620
    [5] Song Xue-Ping, Zhang Yong-Guang, Luo Xiao-Jing, Xu Ling-Fang, Cao Wan-Qiang, Yang Chang-Ping. Relaxor ferroelectricity of (1-x)(K0.5Na0.5)NbO3-xSrTiO3 ceramics. Acta Physica Sinica, 2009, 58(7): 4980-4986. doi: 10.7498/aps.58.4980
    [6] Qi Mei-Lan, He Hong-Liang, Yan Shi-Lin. Critical fracture behavior of high purity aluminum under impact loading. Acta Physica Sinica, 2007, 56(10): 5965-5968. doi: 10.7498/aps.56.5965
    [7] Zhu Jun, Lu Wang-Ping, Liu Qiu-Chao, Mao Xiang-Yu, Hui Rong, Chen Xiao-Bing. Study of properties of lanthanum doped SrBi4Ti4O15 ferroelectric ceramics. Acta Physica Sinica, 2003, 52(6): 1524-1528. doi: 10.7498/aps.52.1524
    [8] WU SHUN-GUANG, DING XIAO-LING, MA MING-QUAN, YIN YUE-CAI, NIN JIAN-JUN, QU SHI-XIAN, HE DA-REN. SUPERCRITICAL PROPERTIES OF A RELAXATION OSCILLATOR. Acta Physica Sinica, 1999, 48(12): 2162-2168. doi: 10.7498/aps.48.2162
    [9] GAO ZHAN, WANG ZHEN-LIN, XU JIAN-HONG. CRITICAL BEHAVIOR AT THE SURFACE OF A SEMI INFINITE MIXED SPIN ISING SYSTEM WITH SURFACE RANDOM FIELD. Acta Physica Sinica, 1997, 46(10): 2029-2035. doi: 10.7498/aps.46.2029
    [10] FAN QIN-LIANG, ZHANG SHU-DONG, DING E-JIANG. CRITICAL BEHAVIORS OF A CLINICAL THERMOMETER MODEL. Acta Physica Sinica, 1996, 45(4): 545-555. doi: 10.7498/aps.45.545
    [11] QIN XIAO-KUI, SHI JING, CHEN HONG, TIAN MING-LIANG, TIAN DE-CHENG. SPECIFIC-HEAT STUDIES OF THE CRITICAL BEHAVIOR FOR K0.3MoO3 AND Tl0.3MoO3 NEAR PEIERLS TRANSITIONS. Acta Physica Sinica, 1996, 45(6): 1033-1038. doi: 10.7498/aps.45.1033
    [12] OU FA, DENG WEN-JI. PHASE TRANSITIONS AT CRITICAL POINTS IN OPTICAL BISTAB1LITY. Acta Physica Sinica, 1990, 39(6): 90-97. doi: 10.7498/aps.39.90
    [13] TANG KUN-FA, HU JIA-ZHEN. POUR-BRANCH CRITICAL SURFACE AND CORRESPONDING CRITICAL BEHAVIOUR FOR ISING MODEL. Acta Physica Sinica, 1988, 37(3): 515-519. doi: 10.7498/aps.37.515
    [14] WANG GUANG-HOU. HYDROGEN DISTRIBUTION IN THE ION IMPLANTED SUPERCONDUCTOR PdCu AND ITS TRANSITION TEMPERATURE. Acta Physica Sinica, 1984, 33(10): 1434-1436. doi: 10.7498/aps.33.1434
    [15] Zhang Cheng, Huo Yu-ping. THE CRITICAL BEHAVIOR OF THE FLUCTUATION IN TRIMOLECULAR REACTION MODELX. Acta Physica Sinica, 1983, 32(6): 750-761. doi: 10.7498/aps.32.750
    [16] JI GUANG-DA, CAI JUN-DAO. APPLICATIONS OF THE SERIES FORMULA OF SUPERCON-DUCTING CRITICAL TEMPERATURE. Acta Physica Sinica, 1979, 28(6): 853-864. doi: 10.7498/aps.28.853
    [17] CAI JUN-DAO, JI GUANG-DA, WU HANG-SHENG, CAI JIAN-HUA, GONG CHANG-DE. THEORY OF THE SUPERCONDUCTING CRITICAL TEMPERATURE (Ⅲ). Acta Physica Sinica, 1979, 28(3): 393-405. doi: 10.7498/aps.28.393
    [18] GONG CHANG-DE, WU HANG-SHENG, CAI JIAN-HUA, CAI JUN-DAO, JI GUANG-DA. THEORY OF THE SUPERCONDUCTING CRITICAL TEMPERATURE (Ⅱ). Acta Physica Sinica, 1978, 27(1): 85-93. doi: 10.7498/aps.27.85
    [19] CAI JIAN-HUA, WU HANG-SHENG. SEARCH FOR A RIGOROUS FORMULA OF THE SUPERCONDUCTING CRITICAL TEMPERATURE. Acta Physica Sinica, 1977, 26(6): 550-552. doi: 10.7498/aps.26.550
    [20] WU HANG-SHENG, CAI JIAN-HUA, GONG CHANG-DE, JI GUANG-DA, CAI JUN-DAO. THEORY OF THE SUPERCONDUCTING CRITICAL TEMPERATURE (Ⅰ). Acta Physica Sinica, 1977, 26(6): 509-520. doi: 10.7498/aps.26.509
Metrics
  • Abstract views:  4333
  • PDF Downloads:  180
  • Cited By: 0
Publishing process
  • Received Date:  28 February 2016
  • Accepted Date:  21 March 2016
  • Published Online:  05 June 2016

/

返回文章
返回