Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ionization state of ultra-thin carbon film irradiated by ultra-short intense laser pulse

Bai Chun-Jiang Cui Wan-Zhao Yu Jin-Qing

Citation:

Ionization state of ultra-thin carbon film irradiated by ultra-short intense laser pulse

Bai Chun-Jiang, Cui Wan-Zhao, Yu Jin-Qing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Ion acceleration is of interest for applications in fast ignition, compact particle sources, medical science, and others. The formation of plasma is of fundamental importance for understanding ion acceleration driven by intense laser. In order to further understand the solid dense material ionization dynamics under ultra-strong field, we use two-dimensional particle-in-cell code to study the ionization process of ultra-thin carbon film, driven by ultra-short intense laser pulse, particularly to see the plasma generation and distribution during the interaction. When an ultra-intense short pulse laser irradiates a solid dense nm-thick film target, the collisional ionization can be ignored for such a thin film target. If the target thickness is larger than laser pulse skin depth, the formation of plasma is contributed from laser field direct ionization and the ionization of electrostatic field inside the target, both of which are discussed and compared by the simulation results in this work. The ionization directly stimulated by laser field happens only near the laser-target interaction surface. After the generation of plasma on the target surface, electrons are accelerated into the target because of laser ponderomotive force. A huge electrostatic field is formed inside the target as a result of hot electron transport in it, and ionizes the target far from the interaction surface. It is found that a bigger fraction of ionization is contributed from electrostatic field ionization inside the target. The effect of laser pulse intensity on ionization is studied in detail, in which the laser pulse intensity is changed from 11018 W/cm2 to 11020 W/cm2. Comparing the results obtained under different intensities, we can see that higher intensity results in higher ionization speed, and much higher-order ions can be generated. At an intensity of 11020 W/cm2, although the intensity much higher than the threshold can generate C+6, only a small part of ions can be ionized into C+6. The reason is that the C+6 ions can be generated directly only by laser field, and the total number of C+6 ions is determined by laser pulse skin depth and spot size. We also consider the effect of laser pulse duration from 30 fs to 120 fs at an intensity of 11020 W/cm2. It is found that higher ionization speed can be obtained, while much less higher-order ions can be generated under shorter laser pulse duration. This description of the generation of solid density plasma driven by intense laser interacting with nm-thick target helps us to further understand the material characteristic under ultra-strong field. This work also benefits the numerical model of plasma in application, namely laser driven ultra-thin film ion acceleration.
      Corresponding author: Yu Jin-Qing, yujinqing5480@gmail.com
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. U1537211).
    [1]

    Maiman T H 1960 Nature 187 493

    [2]

    Strickland D, Mourou G 1985 Opt. Commun. 55 447

    [3]

    Yanovsky V, Chvykov V, Kalinchenko G, Rousseau P, Planchon T, Matsuoka T, Maksimchuk A, Nees J, Cheriaux G, Mourou G, Krushelnick K 2008 Opt. Express 16 2109

    [4]

    Sheng Z M, Weng S M, Yu L L, Wang W M, Cui Y Q, Chen M, Zhang J 2015 Chin. Phys. B 24 015201

    [5]

    Daido H, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 054601

    [6]

    Macchi A, Borghesi M, Passoni M 2013 Rev. Mod. Phys. 85 751

    [7]

    Qiao B, Zepf M, Borghesi M, Geissler M 2009 Phys. Rev. Lett. 102 145002

    [8]

    Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X, Chen J E 2008 Phys. Rev. Lett. 100 135003

    [9]

    Qiao B, Zepf M, Borghesi M, Dromey B, Geissler M, Karmakar A, Gibbon P 2010 Phys. Rev. Lett. 105 155002

    [10]

    Mangles S P D, Murphy C D, Najmudin Z, Thomas A D R, Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 535

    [11]

    Yu J Q, Zhou W M, Cao L H, Zhao Z Q, Cao L F, Shan L Q, Liu D X, Jin X L, Li B, Gu Y Q 2012 Appl. Phys. Lett. 100 204101

    [12]

    Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, Machinnon A, Snavely R A 2001 Phys. Plasma 8 543

    [13]

    Yu J Q, Jin X L, Zhou W M, Zhang B, Zhao Z Q, Cao L F, Li B, Gu Y Q, Zhan R X, Najmudin Z 2013 Laser and Particle Beams 31 597

    [14]

    Yu J Q, Zhou W M, Jin X L, Li B, Zhao Z Q 2012 Acta Phys. Sin. 61 175202 (in Chinese) [余金清, 周维民, 金晓林, 李斌, 赵宗清 2012 物理学报 61 175202]

    [15]

    Esirkepov T, Borghesi M, Bulanov S V, Mourou G, Tajima T 2004 Phys. Rev. Lett. 92 175003

    [16]

    Yin L, Albright B J, Hegelich B M, Bowers K J, Flippo K A, Kwan T J T, Fernandez J C 2007 Phys.Plasmas 14 056706

    [17]

    Kar S, Kakolee K F, Qiao B, Macchi A, Cerchez M, Doria D, Geissler M, McKenna P, Neely D, Osterholz J, Prasad R, Quinn K, Ramakrishna B, Sarri G, Willi O, Yuan X Y, Zepf M, Borghesi M 2012 Phys. Rev. Lett. 109 185006

    [18]

    Palmer C A J, Schreiber, Nagel S R, Dover N P, Bellei C, Beg F N, Bott S, Clarke R J, Dangor A E, Hassan S M, Hilz P, Jung D, Kneip S, Mangles S P D, Lancaster K L, Rehman A, Robinson A P L, Splindloe C, Szerypo J, Tatarakis M, Yeung M, Zepf M, Najmudin Z 2012 Phys. Rev. Lett. 108 225002

    [19]

    Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X, Chen J E 2008 Phys. Rev. Lett. 100 135003

    [20]

    Qiao B, Zepf M, Borghesi M, Dromey B, Geissler M, Karmakar A, Gibbon P 2010 Phys. Rev. Lett. 105 155002

    [21]

    Zhang S, Xie B S, Hong X R, Wu H C, Aimierding A, Zhao X Y, Liu M P 2011 Chin. Phys. B 20 015206

    [22]

    Liu M, Su L N, Zheng Y, Li Y T, Wang W M, Sheng Z M, Chen L M, Ma J L, Lu X, Wang Z H, Wei Z Y, Hu B T, Zhang J 2013 Acta Phys. Sin. 62 165201 (in Chinese) [刘梦, 苏鲁宁, 郑轶, 李玉同, 王伟民, 盛政明, 陈黎明, 马景龙, 鲁欣, 王兆华, 魏志义, 胡碧涛, 张杰 2013 物理学报 62 165201]

    [23]

    Dollar F, Matsuoka T, Petrov G M, Thomas A G R, Bulanov S S, Chvyhov V, Davis, Kalinchenko G, McGuffey C, Willingale L, Yanovsky V, Maksimchuk A, Krushelnick K 2011 Phys. Rev. Lett. 107 065003

    [24]

    Hegelich B M, Pomerantz I, Yin L, Wu H C, Jung D, Albright B J, Gautier D C, Letzring S, Palaniyappan S, Shah R, Allinger K, Horlein R, Schreiber J, Habs D, Blakeney J, Dyer G, Fuller L, Gaul E, Mccary E, Meadows A R, Wang C, Ditmire T, Fernandez J C 2013 New J. Phys. 15 085015

    [25]

    Brarnzel J, Andreev A A, Platonov K, Klingsporn M, Ehrentraut L, Sandner W, Schnurer M 2015 Phys. Rev. Lett. 114 124801

    [26]

    Liu M W, Li R X, Xia C Q, Liu J S, Xu Z Z 2010 Chin. Phys. B 19 075203

    [27]

    Petrov G M, Davis J, Petrova Tz 2009 Plasma Phys. Control. Fusion 51 095005

    [28]

    Arber T D, Bennett K, Brady C S, Lawrence-Douglas A, Ramsay M G, Sircombe N J, Gillies P, Evans R G, Schmitz H, Bell A R, Ridgers C P 2015 Plasma Physics and Controlled Fusion 57 1

    [29]

    Kemp A J, Pfund R E W, Meyer-ter-Vehn Jr 2004 Phys. Plasmas 11 5648

    [30]

    Krainov V P, Smirnov M B 2002 Phys. Reports 370 237

    [31]

    Penetrante B M, Bardsley J N 1991 Phys. Rev. A 43 3100

    [32]

    Wilks S C, Kruer W L, Tabak M, Langdon A B 1992 Phys. Rev. Lett. 69 1383

  • [1]

    Maiman T H 1960 Nature 187 493

    [2]

    Strickland D, Mourou G 1985 Opt. Commun. 55 447

    [3]

    Yanovsky V, Chvykov V, Kalinchenko G, Rousseau P, Planchon T, Matsuoka T, Maksimchuk A, Nees J, Cheriaux G, Mourou G, Krushelnick K 2008 Opt. Express 16 2109

    [4]

    Sheng Z M, Weng S M, Yu L L, Wang W M, Cui Y Q, Chen M, Zhang J 2015 Chin. Phys. B 24 015201

    [5]

    Daido H, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 054601

    [6]

    Macchi A, Borghesi M, Passoni M 2013 Rev. Mod. Phys. 85 751

    [7]

    Qiao B, Zepf M, Borghesi M, Geissler M 2009 Phys. Rev. Lett. 102 145002

    [8]

    Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X, Chen J E 2008 Phys. Rev. Lett. 100 135003

    [9]

    Qiao B, Zepf M, Borghesi M, Dromey B, Geissler M, Karmakar A, Gibbon P 2010 Phys. Rev. Lett. 105 155002

    [10]

    Mangles S P D, Murphy C D, Najmudin Z, Thomas A D R, Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 535

    [11]

    Yu J Q, Zhou W M, Cao L H, Zhao Z Q, Cao L F, Shan L Q, Liu D X, Jin X L, Li B, Gu Y Q 2012 Appl. Phys. Lett. 100 204101

    [12]

    Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, Machinnon A, Snavely R A 2001 Phys. Plasma 8 543

    [13]

    Yu J Q, Jin X L, Zhou W M, Zhang B, Zhao Z Q, Cao L F, Li B, Gu Y Q, Zhan R X, Najmudin Z 2013 Laser and Particle Beams 31 597

    [14]

    Yu J Q, Zhou W M, Jin X L, Li B, Zhao Z Q 2012 Acta Phys. Sin. 61 175202 (in Chinese) [余金清, 周维民, 金晓林, 李斌, 赵宗清 2012 物理学报 61 175202]

    [15]

    Esirkepov T, Borghesi M, Bulanov S V, Mourou G, Tajima T 2004 Phys. Rev. Lett. 92 175003

    [16]

    Yin L, Albright B J, Hegelich B M, Bowers K J, Flippo K A, Kwan T J T, Fernandez J C 2007 Phys.Plasmas 14 056706

    [17]

    Kar S, Kakolee K F, Qiao B, Macchi A, Cerchez M, Doria D, Geissler M, McKenna P, Neely D, Osterholz J, Prasad R, Quinn K, Ramakrishna B, Sarri G, Willi O, Yuan X Y, Zepf M, Borghesi M 2012 Phys. Rev. Lett. 109 185006

    [18]

    Palmer C A J, Schreiber, Nagel S R, Dover N P, Bellei C, Beg F N, Bott S, Clarke R J, Dangor A E, Hassan S M, Hilz P, Jung D, Kneip S, Mangles S P D, Lancaster K L, Rehman A, Robinson A P L, Splindloe C, Szerypo J, Tatarakis M, Yeung M, Zepf M, Najmudin Z 2012 Phys. Rev. Lett. 108 225002

    [19]

    Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X, Chen J E 2008 Phys. Rev. Lett. 100 135003

    [20]

    Qiao B, Zepf M, Borghesi M, Dromey B, Geissler M, Karmakar A, Gibbon P 2010 Phys. Rev. Lett. 105 155002

    [21]

    Zhang S, Xie B S, Hong X R, Wu H C, Aimierding A, Zhao X Y, Liu M P 2011 Chin. Phys. B 20 015206

    [22]

    Liu M, Su L N, Zheng Y, Li Y T, Wang W M, Sheng Z M, Chen L M, Ma J L, Lu X, Wang Z H, Wei Z Y, Hu B T, Zhang J 2013 Acta Phys. Sin. 62 165201 (in Chinese) [刘梦, 苏鲁宁, 郑轶, 李玉同, 王伟民, 盛政明, 陈黎明, 马景龙, 鲁欣, 王兆华, 魏志义, 胡碧涛, 张杰 2013 物理学报 62 165201]

    [23]

    Dollar F, Matsuoka T, Petrov G M, Thomas A G R, Bulanov S S, Chvyhov V, Davis, Kalinchenko G, McGuffey C, Willingale L, Yanovsky V, Maksimchuk A, Krushelnick K 2011 Phys. Rev. Lett. 107 065003

    [24]

    Hegelich B M, Pomerantz I, Yin L, Wu H C, Jung D, Albright B J, Gautier D C, Letzring S, Palaniyappan S, Shah R, Allinger K, Horlein R, Schreiber J, Habs D, Blakeney J, Dyer G, Fuller L, Gaul E, Mccary E, Meadows A R, Wang C, Ditmire T, Fernandez J C 2013 New J. Phys. 15 085015

    [25]

    Brarnzel J, Andreev A A, Platonov K, Klingsporn M, Ehrentraut L, Sandner W, Schnurer M 2015 Phys. Rev. Lett. 114 124801

    [26]

    Liu M W, Li R X, Xia C Q, Liu J S, Xu Z Z 2010 Chin. Phys. B 19 075203

    [27]

    Petrov G M, Davis J, Petrova Tz 2009 Plasma Phys. Control. Fusion 51 095005

    [28]

    Arber T D, Bennett K, Brady C S, Lawrence-Douglas A, Ramsay M G, Sircombe N J, Gillies P, Evans R G, Schmitz H, Bell A R, Ridgers C P 2015 Plasma Physics and Controlled Fusion 57 1

    [29]

    Kemp A J, Pfund R E W, Meyer-ter-Vehn Jr 2004 Phys. Plasmas 11 5648

    [30]

    Krainov V P, Smirnov M B 2002 Phys. Reports 370 237

    [31]

    Penetrante B M, Bardsley J N 1991 Phys. Rev. A 43 3100

    [32]

    Wilks S C, Kruer W L, Tabak M, Langdon A B 1992 Phys. Rev. Lett. 69 1383

  • [1] Han Lin, Miao Shu-Li, Li Peng-Cheng. Theoretical study of high-order harmonics and single ultrashort attosecond pulse generated by optimized combination of laser field. Acta Physica Sinica, 2022, 71(23): 233204. doi: 10.7498/aps.71.20221298
    [2] Jiang Miao, Zheng Xiao-Ran, Lin Nan-Sheng, Li Ying-Jun. Multi-photon transition effects under different external field widths in electron-positron-pair creation process. Acta Physica Sinica, 2021, 70(23): 231202. doi: 10.7498/aps.70.20202101
    [3] Guo Chun-Xiang, Jiao Zhi-Hong, Zhou Xiao-Xin, Li Peng-Cheng. Mechanism of laser intensity-dependent below-threshold harmonic generation. Acta Physica Sinica, 2020, 69(7): 074203. doi: 10.7498/aps.69.20191883
    [4] Huang Cheng, Zhong Ming-Min, Wu Zheng-Mao. Intensity-dependent recollision dynamics in strong-field nonsequential double ionization. Acta Physica Sinica, 2019, 68(3): 033201. doi: 10.7498/aps.68.20181811
    [5] Jin Fa-Cheng, Wang Bing-Bing. Frequency-domain view of nonsequential double ionization in intense laser fields. Acta Physica Sinica, 2016, 65(22): 224205. doi: 10.7498/aps.65.224205
    [6] Xiao Xiang-Ru, Wang Mu-Xue, Li Min, Geng Ji-Wei, Liu Yun-Quan, Peng Liang-You. Semiclassical methods for strong field ionization of atoms. Acta Physica Sinica, 2016, 65(22): 220203. doi: 10.7498/aps.65.220203
    [7] Zhao Lei, Zhang Qi, Dong Jing-Wei, Lü Hang, Xu Hai-Feng. Rydberg state excitations and double ionizations of different atoms in strong femtosecond laser field. Acta Physica Sinica, 2016, 65(22): 223201. doi: 10.7498/aps.65.223201
    [8] Wang Pin-Yi, Jia Xin-Yan, Fan Dai-He, Chen Jing. Resonance-like enhancement in high-order above-threshold ionzation of argon at different wavelengths. Acta Physica Sinica, 2015, 64(14): 143201. doi: 10.7498/aps.64.143201
    [9] Li Wen-Liang, Zhang Ji, Yao Hong-Bin. Multi-configuration time dependent Hartree Fock method in three different representations. Acta Physica Sinica, 2013, 62(12): 123202. doi: 10.7498/aps.62.123202
    [10] Liu Meng, Su Lu-Ning, Zheng Yi, Li Yu-Tong, Wang Wei-Min, Sheng Zheng-Ming, Chen Li-Ming, Ma Jing-Long, Lu Xin, Wang Zhao-Hua, Wei Zhi-Yi, Hu Bi-Tao, Zhang Jie. Origin of energetic carbon ions with different charge states in ultrashort laser-thin foil interactions. Acta Physica Sinica, 2013, 62(16): 165201. doi: 10.7498/aps.62.165201
    [11] Ma Ning, Wang Mei-Shan, Yang Chuan-Lu, Xiong De-Lin, Li Xiao-Hu, Ma Xiao-Guang. Theoretical study of the influence of laser intensity on the population of the NO molecule electronic states. Acta Physica Sinica, 2010, 59(1): 215-221. doi: 10.7498/aps.59.215
    [12] Ye Xiao-Liang, Zhou Xiao-Xin, Zhao Song-Feng, Li Peng-Cheng. The single attosecond pulse generated by atom exposed to two-color combined laser field. Acta Physica Sinica, 2009, 58(3): 1579-1585. doi: 10.7498/aps.58.1579
    [13] Li Hui-Shan, Li Peng-Cheng, Zhou Xiao-Xin. Role of potential function in high order harmonic generation of model hydrogen atoms in intense laser field. Acta Physica Sinica, 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [14] Guo Zhong-Hua, Zhou Xiao-Xin. The influence of molecular ground state wave function on high-order harmonic generation from N2 molecules in intense laser fields. Acta Physica Sinica, 2008, 57(3): 1616-1621. doi: 10.7498/aps.57.1616
    [15] Zhao Song-Feng, Zhou Xiao-Xin, Jin Cheng. Investigation of high order harmonic generation and ionization of model hydrogen atoms and real hydrogen atom in intense laser field. Acta Physica Sinica, 2006, 55(8): 4078-4085. doi: 10.7498/aps.55.4078
    [16] Li Peng-Cheng, Zhou Xiao-Xin, Dong Chen-Zhong, Zhao Song-Feng. Investigation of the high harmonic generation and ionization of atoms with long-range and short-range potentials in intense laser fields. Acta Physica Sinica, 2004, 53(3): 750-755. doi: 10.7498/aps.53.750
    [17] ZHOU XIAO-XIN, LI BAI-WEN. CONTRIBUTION OF THE BOUND STATES AND CONTINUUM STATES OF AN ATOM IN INTENSE LASER FIELDS TO HIGH HARMONIC GENERATION . Acta Physica Sinica, 2001, 50(10): 1902-1906. doi: 10.7498/aps.50.1902
    [18] SHAO LEIL, HUO YU-KUN, WANG PING-XIAO, KONG QING, YUAN XIANG-QUN, FENG LIANG. EFFECT OF FIELD POLARIZATION DIRECTION ON ACCELERATING ELECTRON WITH EXTRA-INTENSE STATIONARY LASER BEAM. Acta Physica Sinica, 2001, 50(7): 1284-1289. doi: 10.7498/aps.50.1284
    [19] ZHENG LI-PING, QIU XI-JUN. THE INFLUENCE OF THE INTENSITY AND THE FREQUENCY ON THE ENHANCED IONIZATION BEHA VIOR OF MULTIATOMIC MOLECULAR IONS IN THE INTENSE LASER FIELDS. Acta Physica Sinica, 2000, 49(10): 1965-1968. doi: 10.7498/aps.49.1965
    [20] DING GANG-JIAN, SHANG REN-CHENG, ZHANG LIAN-FANG, WEN KE-LING, HUI QIN, CHEN DIE-YAN. EXPERIMENTAL STUDY OF RYDBERG STATES OF AU ATOM. Acta Physica Sinica, 1989, 38(7): 1048-1055. doi: 10.7498/aps.38.1048
Metrics
  • Abstract views:  4452
  • PDF Downloads:  191
  • Cited By: 0
Publishing process
  • Received Date:  17 February 2016
  • Accepted Date:  09 March 2016
  • Published Online:  05 June 2016

/

返回文章
返回