Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical research on the generation of a submicron localized hollow beam and its applications in the trapping and cooling of a single atom

Ren Rui-Min Yin Ya-Ling Wang Zhi-Zhang Guo Chao-Xiu Yin Jian-Ping

Citation:

Theoretical research on the generation of a submicron localized hollow beam and its applications in the trapping and cooling of a single atom

Ren Rui-Min, Yin Ya-Ling, Wang Zhi-Zhang, Guo Chao-Xiu, Yin Jian-Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In order to generate a submicron localized hollow laser beam and realize the more efficient laser cooling and trapping of a single atom, a simple and promising scheme with using the system of a single mode fiber a circle binary phase plate and a microlens is proposed in this paper. From Rayleigh-Sommerfeld diffraction theory, the intensity distribution of the generated localized hollow laser beam near the focal plane and its propagating properties in free space are calculated. Also, the dependences of the dark-spot size of the localized hollow beam on the mode radius of single mode fiber and the focal length of the mocrolens are studied. The calculated results show that the intensity distribution of the localized hollow beam presents approximately symmstrical distribution near the focal plane. In the center of the focal plane, the light intensity is 0 and increases gradually around it. So a closed spherical light field (i.e., localized hollow laser beam) with a radius of 0.4 m is generated. The calculated results also show that the dark-spot size of the localized hollow laser beam decreases with the increasing of the microlens focal length and the decreasing of the single mode fiber mode radius. So proper parameters of this optical system can be chosen to generate localized hollow laser beams with different sizes for various applications. When the localized hollow laser beam is blue detuned, atoms will be trapped in the minimum light filed. If a repumping laser beam is applied, the trapped atoms will be also cooled by the intensity-gradient Sisyphus cooling. In this paper, we build a device for trapping and cooling a single atom by using the generated blue detuned submicron localized hollow laser beam. We study the dynamical process of intensity-gradient cooling of a single 87Rb atom trapped in the localized hollow beam by Monte-Carlo method. Our study shows that a single 87Rb atom with a temperature of 120 K (the corresponding momentum is 30ħk) from a magneto-optical trap (MOT) can be directly cooled to a final tempreture of ~ 5.8 K (the corresponding momentum is ~ 6.6ħk). So an ultracold single atom is generated and trapped in our submicro localized hollow beam. This device for obtaining ultralcold single atom can be widely uesd in the regions of the optical physics, the atom and molecule optics, such as the detecting of the fundamental physical parameters, realizing the quantum computer, studying the cold collision of singe atoms, and realizing the single atom laser.
      Corresponding author: Yin Ya-Ling, ylyin@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274114).
    [1]

    Yin J P, Gao W J, Zhu Y F {2003 Prog. Opt. 44 119

    [2]

    Yin J P, Liu N C, Xia Y, Yun M 2004 Prog. Phys. 24 336 (in Chinese) [印建平, 刘南春, 夏勇, 恽旻 2004 物理学进展 24 336]

    [3]

    Ito H, Sakaki K, Jhe W, Ohstu M 1997 Phys. Rev. A 56 712

    [4]

    Power W L, Allen L, Babiler M 1995 Phys. Rev. A 52 479

    [5]

    Lee H S, Stewart B W, Choi K, Fenichel H 1994 Phys. Rev. A 49 4922

    [6]

    Hechenberg N R, McDuff R, Smith C P, White A G 1992 Opt. Lett. 17 221

    [7]

    Wang X, Littman M G 1993 Opt. Lett. 18 767

    [8]

    Yin J P, Noh H R, Lee K L, Wang Y Z, Jhe W 1997 Opt. Commun. 138 287

    [9]

    Mamaev A V, Saffman M, Zozulya A 1996 Phys. Rev. Lett. 77 4544

    [10]

    Du X L, Yin Y L, Zheng G J, Guo C X, Sun Y, Zhou Z N, Bai S J, Wang H L, Xia Y, Yin J P 2014 Opt. Commun. 322 179

    [11]

    He Y L, Liu Z X, Liu Y C, Zhou J X, Ke Y G, Luo H L, Wen S C 2015 Opt. Lett. 40 5506

    [12]

    Zhou Q, Lu J F, Yin J P 2015 Acta Phys. Sin. 64 053701 (in Chinese) [周琦, 陆俊发, 印建平 2015 物理学报 64 053701]

    [13]

    Ma L, Wu F T {2011 Infrared and Laser Engineering 40 1988 (in Chinese) [马亮, 吴锋铁 2011 红外与激光工程 40 1988]

    [14]

    Du T J, Wu F T, W T, Li P, Li D, He X {2013 Acta Opt. Sin. 33 0908001 (in Chinese) [杜团结, 吴锋铁, 王涛, 李攀, 李冬, 何西 2013 光学学报 33 0908001]

    [15]

    Ozeri R, Khaykovich L, Davidson N 1999 Phys. Rev. A 59 1750

    [16]

    Arlt J, Padgent M J 2000 Opt. Lett. 25 191

    [17]

    Tai P T, Hsieh W F, Chen C H 2004 Opt. Express 12 5827

    [18]

    Zhao Y, Zhan Q, Zhang Y, Li Y P 2005 Opt. Lett. 30 848

    [19]

    Cheng Y G, Tong J M, Zhu J P, Liu J B, Hu S, He Y 2015 Opt. Laser Eng. 77 18

    [20]

    Hood C J, Lynn T W, Doherty A C, Parkins A S, Kimble H J 2000 Science 287 1447

    [21]

    Tey M K, Maslennikov G, Liew T C H, Aljunid S A, Huber F, Chng B, Chen Z, Scarani V, Kurtsiefer C 2009 New J. Phys. 11 043011

    [22]

    Maunz P, Puppe T, Schuster I, Syassen N, Pinkse P W H, Rempe G 2004 Nature 428 50

    [23]

    Li W F, Du J J, Wen R J, Li G, Zhang T C 2015 Chin. Phys. Lett. 32 104210

    [24]

    Boozer A D, Boca A, Miller R, Northup T E, Kimble H J 2006 Phys. Rev. Lett. 97 083602

    [25]

    Koch M, Sames C, Kubanek A, Apel M, Balbach M, Ourjoumtsev A, Pinkse P W H, Rempe G 2010 Phys. Rev. Lett. 105 173003

    [26]

    Yin Y L, Xia Y, Ren R M, Du X L, Yin J P 2015 J. Phys. B:At. Mol. Opt. Phys. 48 195001

    [27]

    Manning A G, Khakimov R, Dall R G, Truscott A G 2014 Phys. Rev. Lett. 113 130403

    [28]

    Ni Y, Yin J P 2006 Acta Phys. Sin. 55 130 (in Chinese) [倪贇, 印建平 2006 物理学报 55 130]

    [29]

    Oikawa M, Lga A, Sanada T {1981 Jap. J. Appl. Phys. 48 49

    [30]

    Borroui N F, Morse D L, Beuman R H, et. al 1985 Appl. Opt. 24 2520

    [31]

    Ren Z B, Lu Z W {2005 J. Laser Appl. 16 150 (in Chinese) [任智斌, 卢振武 2005 电子 16 150]

    [32]

    Fu Y, Ngoi B K A 2001 Opt. Eng. 40 511

    [33]

    Xu P, He X D, Wang J, Zhan M S 2010 Opt. Lett. 35 2164

    [34]

    He J, Wang J, Yang B D, Zhang T C, Wang J M 2009 Chin. Phys. B 18 3404

    [35]

    Wang Z L, Dai M, Yin J P 2005 Opt. Exp. 13 8406

    [36]

    Wu F T, Cheng Z M, Wang T, Pu J X {2013 Acta Opt. Sin. 33 0326001 (in Chinese) [吴逢铁, 程治明, 王涛, 蒲继雄 2013 光学学报 33 0326001]

    [37]

    Mu R W, Lu S, Ji X M, Yin J P 2009 J. Opt. Soc. Am. B 26 80

    [38]

    Nelson K D, Li X, Weiss D S 2007 Nature Phys. 3 556

  • [1]

    Yin J P, Gao W J, Zhu Y F {2003 Prog. Opt. 44 119

    [2]

    Yin J P, Liu N C, Xia Y, Yun M 2004 Prog. Phys. 24 336 (in Chinese) [印建平, 刘南春, 夏勇, 恽旻 2004 物理学进展 24 336]

    [3]

    Ito H, Sakaki K, Jhe W, Ohstu M 1997 Phys. Rev. A 56 712

    [4]

    Power W L, Allen L, Babiler M 1995 Phys. Rev. A 52 479

    [5]

    Lee H S, Stewart B W, Choi K, Fenichel H 1994 Phys. Rev. A 49 4922

    [6]

    Hechenberg N R, McDuff R, Smith C P, White A G 1992 Opt. Lett. 17 221

    [7]

    Wang X, Littman M G 1993 Opt. Lett. 18 767

    [8]

    Yin J P, Noh H R, Lee K L, Wang Y Z, Jhe W 1997 Opt. Commun. 138 287

    [9]

    Mamaev A V, Saffman M, Zozulya A 1996 Phys. Rev. Lett. 77 4544

    [10]

    Du X L, Yin Y L, Zheng G J, Guo C X, Sun Y, Zhou Z N, Bai S J, Wang H L, Xia Y, Yin J P 2014 Opt. Commun. 322 179

    [11]

    He Y L, Liu Z X, Liu Y C, Zhou J X, Ke Y G, Luo H L, Wen S C 2015 Opt. Lett. 40 5506

    [12]

    Zhou Q, Lu J F, Yin J P 2015 Acta Phys. Sin. 64 053701 (in Chinese) [周琦, 陆俊发, 印建平 2015 物理学报 64 053701]

    [13]

    Ma L, Wu F T {2011 Infrared and Laser Engineering 40 1988 (in Chinese) [马亮, 吴锋铁 2011 红外与激光工程 40 1988]

    [14]

    Du T J, Wu F T, W T, Li P, Li D, He X {2013 Acta Opt. Sin. 33 0908001 (in Chinese) [杜团结, 吴锋铁, 王涛, 李攀, 李冬, 何西 2013 光学学报 33 0908001]

    [15]

    Ozeri R, Khaykovich L, Davidson N 1999 Phys. Rev. A 59 1750

    [16]

    Arlt J, Padgent M J 2000 Opt. Lett. 25 191

    [17]

    Tai P T, Hsieh W F, Chen C H 2004 Opt. Express 12 5827

    [18]

    Zhao Y, Zhan Q, Zhang Y, Li Y P 2005 Opt. Lett. 30 848

    [19]

    Cheng Y G, Tong J M, Zhu J P, Liu J B, Hu S, He Y 2015 Opt. Laser Eng. 77 18

    [20]

    Hood C J, Lynn T W, Doherty A C, Parkins A S, Kimble H J 2000 Science 287 1447

    [21]

    Tey M K, Maslennikov G, Liew T C H, Aljunid S A, Huber F, Chng B, Chen Z, Scarani V, Kurtsiefer C 2009 New J. Phys. 11 043011

    [22]

    Maunz P, Puppe T, Schuster I, Syassen N, Pinkse P W H, Rempe G 2004 Nature 428 50

    [23]

    Li W F, Du J J, Wen R J, Li G, Zhang T C 2015 Chin. Phys. Lett. 32 104210

    [24]

    Boozer A D, Boca A, Miller R, Northup T E, Kimble H J 2006 Phys. Rev. Lett. 97 083602

    [25]

    Koch M, Sames C, Kubanek A, Apel M, Balbach M, Ourjoumtsev A, Pinkse P W H, Rempe G 2010 Phys. Rev. Lett. 105 173003

    [26]

    Yin Y L, Xia Y, Ren R M, Du X L, Yin J P 2015 J. Phys. B:At. Mol. Opt. Phys. 48 195001

    [27]

    Manning A G, Khakimov R, Dall R G, Truscott A G 2014 Phys. Rev. Lett. 113 130403

    [28]

    Ni Y, Yin J P 2006 Acta Phys. Sin. 55 130 (in Chinese) [倪贇, 印建平 2006 物理学报 55 130]

    [29]

    Oikawa M, Lga A, Sanada T {1981 Jap. J. Appl. Phys. 48 49

    [30]

    Borroui N F, Morse D L, Beuman R H, et. al 1985 Appl. Opt. 24 2520

    [31]

    Ren Z B, Lu Z W {2005 J. Laser Appl. 16 150 (in Chinese) [任智斌, 卢振武 2005 电子 16 150]

    [32]

    Fu Y, Ngoi B K A 2001 Opt. Eng. 40 511

    [33]

    Xu P, He X D, Wang J, Zhan M S 2010 Opt. Lett. 35 2164

    [34]

    He J, Wang J, Yang B D, Zhang T C, Wang J M 2009 Chin. Phys. B 18 3404

    [35]

    Wang Z L, Dai M, Yin J P 2005 Opt. Exp. 13 8406

    [36]

    Wu F T, Cheng Z M, Wang T, Pu J X {2013 Acta Opt. Sin. 33 0326001 (in Chinese) [吴逢铁, 程治明, 王涛, 蒲继雄 2013 光学学报 33 0326001]

    [37]

    Mu R W, Lu S, Ji X M, Yin J P 2009 J. Opt. Soc. Am. B 26 80

    [38]

    Nelson K D, Li X, Weiss D S 2007 Nature Phys. 3 556

  • [1] Huang Xue-Feng, Chen Chu, Li Jia-Xin, Zhang Min-Qi, Li Sheng-Ji. Measurement of scattering intensity distribution of single microparticles/nanoclusters based on laser levitation. Acta Physica Sinica, 2023, 72(17): 174201. doi: 10.7498/aps.72.20230499
    [2] Yan Wei-Zhi, Fan Qing, Yang Peng-Fei, Li Gang, Zhang Peng-Fei, Zhang Tian-Cai. Trapping of single atom and precise control of its coupling strength in micro-optical cavity. Acta Physica Sinica, 2023, 72(11): 114202. doi: 10.7498/aps.72.20222220
    [3] Zhu Qing-Zhi, Wu Feng-Tie, Hu Run, Feng Cong. Precise controll of hollow beam size. Acta Physica Sinica, 2016, 65(18): 184101. doi: 10.7498/aps.65.184101
    [4] Liu Bei, Jin Gang, He Jun, Wang Jun-Min. 852-nm triggered single-photon source based on trapping and manipulation of a single cesium atom confined in a microscopic optical dipole trap. Acta Physica Sinica, 2016, 65(23): 233701. doi: 10.7498/aps.65.233701
    [5] Zhu Qing-Zhi, Shen Dong-Hui, Wu Feng-Tie, He Xi. Effects of a partially coherent beam on periodic bottle beam. Acta Physica Sinica, 2016, 65(4): 044103. doi: 10.7498/aps.65.044103
    [6] Diao Wen-Ting, He Jun, Liu Bei, Wang Jie-Ying, Wang Jun-Min. Improving the single atom probability by using the blue-detuned laser-assisted-collisions between the cold atoms trapped in the for-off-resonance trap. Acta Physica Sinica, 2014, 63(2): 023701. doi: 10.7498/aps.63.023701
    [7] Wang Jie-Ying, Liu Bei, Diao Wen-Ting, Jin Gang, He Jun, Wang Jun-Min. Optimization of the light-induced-fluorescence signals of single atoms and efficient loading of single atoms into a magneto-optical trap. Acta Physica Sinica, 2014, 63(5): 053202. doi: 10.7498/aps.63.053202
    [8] He Xi, Du Tuan-Jie, Wu Feng-Tie. Optical bottle beam generated by a new type of light emitting diode lens. Acta Physica Sinica, 2014, 63(7): 074201. doi: 10.7498/aps.63.074201
    [9] Du Tuan-Jie, Wang Tao, Wu Feng-Tie. Line focusing characteristics of axicon illuminated by non-diffracting Bessel beam. Acta Physica Sinica, 2013, 62(13): 134103. doi: 10.7498/aps.62.134103
    [10] Wang Cheng, Xu Peng, He Xiao-Dong, Wang Jin, Zhan Ming-Sheng. Transferring single-atoms between two red-detuned far-off-resonance optical dipole traps. Acta Physica Sinica, 2012, 61(20): 203701. doi: 10.7498/aps.61.203701
    [11] Cheng Zhi-Ming, Wu Feng-Tie, Zhang Qian-An, Zheng Wei-Tao. New method of generating self-imaged optical bottle beams and particles captured. Acta Physica Sinica, 2012, 61(9): 094201. doi: 10.7498/aps.61.094201
    [12] Zhang Qian-An, Wu Feng-Tie, Zheng Wei-Tao. Eliminating the center spot of bottle beam generated by axicon-lens system. Acta Physica Sinica, 2012, 61(3): 034205. doi: 10.7498/aps.61.034205
    [13] Cheng Zhi-Ming, Wu Feng-Tie, Fang Xiang, Fan Dan-Dan, Zhu Jian-Qiang. Multi-bottle beam generated by vaulted axicon. Acta Physica Sinica, 2012, 61(21): 214201. doi: 10.7498/aps.61.214201
    [14] Zhang Qian-An, Wu Feng-Tie, Zheng Wei-Tao, Ma Liang. Bottle beam generated by novel axicon. Acta Physica Sinica, 2011, 60(9): 094201. doi: 10.7498/aps.60.094201
    [15] Lu Wen-He, Wu Feng-Tie, Ma Bao-Tian. A bottle beam generated by a ring obstacle-axicon. Acta Physica Sinica, 2010, 59(9): 6101-6105. doi: 10.7498/aps.59.6101
    [16] Ma Liang, Wu Feng-Tie. A bottle beam generated by a step refractive index axicon. Acta Physica Sinica, 2010, 59(9): 6096-6100. doi: 10.7498/aps.59.6096
    [17] Wang Zheng-Ling, Cao Guo-Rong, Yin Jian-Ping. 2D array of surface optical micro-traps by evanescent wave interference. Acta Physica Sinica, 2008, 57(10): 6233-6239. doi: 10.7498/aps.57.6233
    [18] Yin Jian-Ping, Gao Wei-Jian. Intensity-gradient cooling of atoms in a localized-hol low beam*. Acta Physica Sinica, 2004, 53(12): 4157-4162. doi: 10.7498/aps.53.4157
    [19] Liu Tao, Zhang Tian-Cai, Wang Jun-Min, Peng Kun-Chi. Optical dipole trap in a high-finesse micro-cavity. Acta Physica Sinica, 2004, 53(5): 1346-1351. doi: 10.7498/aps.53.1346
    [20] YIN JIAN-PING, GAO WEI-JIAN, LIU NAN-CHUN, WANG YI-QIU. POSSIBILITY OF ALL OPTICALLY-COOLED AND TRAPPED 133Cs ATOMIC BEC. Acta Physica Sinica, 2001, 50(4): 660-666. doi: 10.7498/aps.50.660
Metrics
  • Abstract views:  4870
  • PDF Downloads:  169
  • Cited By: 0
Publishing process
  • Received Date:  08 January 2016
  • Accepted Date:  16 February 2016
  • Published Online:  05 June 2016

/

返回文章
返回