Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Computational fluid dynamics analysis and experimental study of sounding temperature sensor

Dai Wei Liu Qing-Quan Yang Jie Su Kai-Feng Han Shang-Bang Shi Jia-Chi

Citation:

Computational fluid dynamics analysis and experimental study of sounding temperature sensor

Dai Wei, Liu Qing-Quan, Yang Jie, Su Kai-Feng, Han Shang-Bang, Shi Jia-Chi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Owing to the fact that the increasing amount of attention has been focused on numerical weather forecast and climate change research, it is desired that the observation error of upper air temperature with using sounding temperature sensors can be reduced down to 0.1 K. However, the temperature measurement errors of bead thermistor sounding temperature sensors, induced by solar radiation, are on the order of 1 K or more, which is a few orders of magnitude larger than the errors produced by the measurement circuits and digital signal processing systems in radiosondes. Hence, the solar radiation error poses an important bottleneck for improving the measurement accuracy. To tackle this problem, a numerical analysis method is proposed in this research. By employing a computational fluid dynamics (CFD) method, the influences of various solar radiation intensity, sensor angles, and air pressures from sea level to 20 km altitude on temperature measurement accuracy are studied. In this CFD model, the boundary conditions of external convection and solar radiation of the bead thermistor are taken into consideration. The modeling results indicate that solar radiation intensity and altitude are important factors that affect the amplitude of the radiation error. With the elevation increasing from sea level, the solar heating error appears to have an exponential correlation with the altitude, which exhibits a growing slop rate. When the sensor angle is 90o, the radiation error of a bead thermistor sensor probe is minimal. The simulation results are fitted by a Levenberg-Marquardt method and a global optimization method. A correction equation of the radiation error is obtained, where the altitude of the sensor and solar radiation intensity act as two major variables in the equation. In order to verify the equation obtained in this study, an experimental platform for solar radiation error, which includes a low-pressure temperature chamber, a rotation apparatus, an LED-based radiation source, and a wireless communication system, is designed and constructed. It can be found that the solar radiation errors of the bead thermistor based on fluid dynamics numerical calculation are generally consistent with experimental data. The average offset and root mean square error between the correction equation and experimental results are 0.017 K and 0.023 K, respectively, which can demonstrate the accuracies of the computational fluid dynamics method, the Levenberg-Marquardt method and the global optimization method proposed in this research. The methods and techniques introduced in this paper may open the way for correcting the solar radiation errors of the bead thermistor sounding temperature sensors.
      Corresponding author: Dai Wei, daiweiilove@163.com
    • Funds: Project supported by the Special Scientific Research Fund of Meteorological Public Welfare Profession of China (Grant Nos. GYHY200906037, GYHY201306079), the National Natural Science Foundation of China (Grant Nos. 412475042, 61306138), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
    [1]

    Kann A, Seidl H, Wittmann C, Haiden T 2010 Wea. Forecast. 25 290

    [2]

    Frick C, Wernli H 2012 Wea. Forecast. 27 1217

    [3]

    Ware H R, Rocken C, Solheim S F, Exner M 1996 Bull. Amer. Meteor. Soc. 77 19

    [4]

    Seidel D J, Angell J K, Christy J, Free M, Klein S A, Lanzante J R, Mears C, Parker D, Schabel M, Spencer R, Sterin A, Thorne P, Wentz F 2004 J. Climate 17 2225

    [5]

    Thorne P W, Parker D E, Christy J R, Mears C A 2005 Bull. Amer. Meteor. Soc. 86 1437

    [6]

    Free M, Durre I, Aguilar E, Seidel D, Peterson T C, Eskridge R E, Luers J K, Parker D, Gordon M, Lanzante J, Klein S, Christy J, Schroeder S, Soden B, McMillin L M, Weatherhead E 2002 Bull. Amer. Meteor. Soc. 83 891

    [7]

    Seidel D J, Free M 2006 J. Climate 19 854

    [8]

    Luers J K {1997 J. Climate 11 1002

    [9]

    Ji X Q {2005 Xinjiang Meteorol. 28 12 (in Chinese) [冀新琪 2005 新疆气象 28 12]

    [10]

    Liu M, Pu M J, Gao P, Shen S Q, Sun Y {2008 Meteorol. Sci. Technol. 36 728 (in Chinese) [刘梅, 濮梅娟, 高萍, 沈树勤, 孙燕 2008 气象科技 36 728]

    [11]

    Toggweiler J R, Joellen R 2008 Nature 451 286

    [12]

    Joan B, Oller J M, Huey R B, Gilchrist G W, Luis S {2007 Science 315 1497

    [13]

    Harris P P, Huntingford C, Cox P M 2008 Philosoph. Trans. Royal Soc. London B: Biol. Sci. 363 1753

    [14]

    Tang H Y, Zhai P M 2005 Chin. J. Geophys. 48 526 (in Chinese) [唐红玉, 翟盘茂 2005 地球物理学报 48 526]

    [15]

    Xue D Q, Tan Z M, Gong D L Wang X T 2007 Plateau Meteorol. 26 141 (in Chinese) [薛德强, 谈哲敏, 龚佃利, 王兴堂 2007 高原气象 26 141]

    [16]

    Cheng Y, Li D L, Hu W C, Shen F {2002 Plateau Meteorol. 21 217 (in Chinese) [程瑛, 李栋梁, 胡文超, 沈福 2002 高原气象 21 217]

    [17]

    Wang R Y, Zhou S W, Wu P, Wang X M, Wu Y {2010 Meteorolog. Environm. Sci. 33 31 (in Chinese) [王荣英, 周顺武, 吴萍, 王晓敏, 吴雁 2010 气象与环境科学 33 31]

    [18]

    Shangguan M J, Xia H Y, Dou X K, Wang C, Qiu J W, Zhang Y P, Shu Z F, Xue X H 2015 Chin. Phys. B 24 094212

    [19]

    Zhao R C, Xia H Y, Dou X K, Sun D S, Han Y L, Shangguan M J, Guo Jie, Shu Z F 2015 Chin. Phys. B 24 024218

    [20]

    Sheng Z, Fang H X 2013 Chin. Phys. B 22 029301

    [21]

    Sherwood S C, Lanzante J R, Meyer C L {2005 Science 9 1556

    [22]

    Randel W J, Wu F 2006 J. Clim. 19 2094

    [23]

    Haimberger L, Tavolato C, Sperka S 2008 J. Clim. 21 4587

    [24]

    Schmidlin F J, Luers J K, Hoffman P D {1986 NASA Tech. 2637 1

    [25]

    Luers J K 1990 J. Atmos. Ocean. Technol. 7 882

    [26]

    Luers J K, Eskridge R E 1995 J. Appl. Meteor. 34 1241

    [27]

    Ruffieux D, Joss J 2003 J. Atmos. Ocean. Technol. 20 1576

    [28]

    Chen F Z, Qiang H F, Gao W R 2014 Acta Phys. Sin. 63 230206 (in Chinese) [陈福振, 强洪夫, 高巍然 2014 物理学报 63 230206]

    [29]

    Mao X L, Xiao S R, Liu Q Q, Li M, Zhang J H 2014 Acta Phys. Sin. 63 144701 (in Chinese) [冒晓莉, 肖韶荣, 刘清惓, 李敏, 张加宏 2014 物理学报 63 144701]

    [30]

    Wang X H, Yi S T, Fu J, Lu X G, He L 2015 Acta Phys. Sin. 64 054706 (in Chinese) [王小虎, 易仕和, 付佳, 陆小革, 何霖 2015 物理学报 64 054706]

    [31]

    NOAA, NASA, USAF 1976 U. S. Standard Atmosphere (Washington D.C.: U.S. Government Printing office) pp53-63

    [32]

    Gao Y, Liu H B, Wang L, Gu G C 2013 Chin. Opt. 6 570 (in Chinese) [高雁, 刘洪波, 王丽, 顾国超 2013 中国光学 6 570]

    [33]

    Gao Y, Liu H B, Wang L, Gu G C {2014 Chin. Opt. 7 657 (in Chinese) [高雁, 刘洪波, 王丽, 顾国超 2014 中国光学 7 657]

  • [1]

    Kann A, Seidl H, Wittmann C, Haiden T 2010 Wea. Forecast. 25 290

    [2]

    Frick C, Wernli H 2012 Wea. Forecast. 27 1217

    [3]

    Ware H R, Rocken C, Solheim S F, Exner M 1996 Bull. Amer. Meteor. Soc. 77 19

    [4]

    Seidel D J, Angell J K, Christy J, Free M, Klein S A, Lanzante J R, Mears C, Parker D, Schabel M, Spencer R, Sterin A, Thorne P, Wentz F 2004 J. Climate 17 2225

    [5]

    Thorne P W, Parker D E, Christy J R, Mears C A 2005 Bull. Amer. Meteor. Soc. 86 1437

    [6]

    Free M, Durre I, Aguilar E, Seidel D, Peterson T C, Eskridge R E, Luers J K, Parker D, Gordon M, Lanzante J, Klein S, Christy J, Schroeder S, Soden B, McMillin L M, Weatherhead E 2002 Bull. Amer. Meteor. Soc. 83 891

    [7]

    Seidel D J, Free M 2006 J. Climate 19 854

    [8]

    Luers J K {1997 J. Climate 11 1002

    [9]

    Ji X Q {2005 Xinjiang Meteorol. 28 12 (in Chinese) [冀新琪 2005 新疆气象 28 12]

    [10]

    Liu M, Pu M J, Gao P, Shen S Q, Sun Y {2008 Meteorol. Sci. Technol. 36 728 (in Chinese) [刘梅, 濮梅娟, 高萍, 沈树勤, 孙燕 2008 气象科技 36 728]

    [11]

    Toggweiler J R, Joellen R 2008 Nature 451 286

    [12]

    Joan B, Oller J M, Huey R B, Gilchrist G W, Luis S {2007 Science 315 1497

    [13]

    Harris P P, Huntingford C, Cox P M 2008 Philosoph. Trans. Royal Soc. London B: Biol. Sci. 363 1753

    [14]

    Tang H Y, Zhai P M 2005 Chin. J. Geophys. 48 526 (in Chinese) [唐红玉, 翟盘茂 2005 地球物理学报 48 526]

    [15]

    Xue D Q, Tan Z M, Gong D L Wang X T 2007 Plateau Meteorol. 26 141 (in Chinese) [薛德强, 谈哲敏, 龚佃利, 王兴堂 2007 高原气象 26 141]

    [16]

    Cheng Y, Li D L, Hu W C, Shen F {2002 Plateau Meteorol. 21 217 (in Chinese) [程瑛, 李栋梁, 胡文超, 沈福 2002 高原气象 21 217]

    [17]

    Wang R Y, Zhou S W, Wu P, Wang X M, Wu Y {2010 Meteorolog. Environm. Sci. 33 31 (in Chinese) [王荣英, 周顺武, 吴萍, 王晓敏, 吴雁 2010 气象与环境科学 33 31]

    [18]

    Shangguan M J, Xia H Y, Dou X K, Wang C, Qiu J W, Zhang Y P, Shu Z F, Xue X H 2015 Chin. Phys. B 24 094212

    [19]

    Zhao R C, Xia H Y, Dou X K, Sun D S, Han Y L, Shangguan M J, Guo Jie, Shu Z F 2015 Chin. Phys. B 24 024218

    [20]

    Sheng Z, Fang H X 2013 Chin. Phys. B 22 029301

    [21]

    Sherwood S C, Lanzante J R, Meyer C L {2005 Science 9 1556

    [22]

    Randel W J, Wu F 2006 J. Clim. 19 2094

    [23]

    Haimberger L, Tavolato C, Sperka S 2008 J. Clim. 21 4587

    [24]

    Schmidlin F J, Luers J K, Hoffman P D {1986 NASA Tech. 2637 1

    [25]

    Luers J K 1990 J. Atmos. Ocean. Technol. 7 882

    [26]

    Luers J K, Eskridge R E 1995 J. Appl. Meteor. 34 1241

    [27]

    Ruffieux D, Joss J 2003 J. Atmos. Ocean. Technol. 20 1576

    [28]

    Chen F Z, Qiang H F, Gao W R 2014 Acta Phys. Sin. 63 230206 (in Chinese) [陈福振, 强洪夫, 高巍然 2014 物理学报 63 230206]

    [29]

    Mao X L, Xiao S R, Liu Q Q, Li M, Zhang J H 2014 Acta Phys. Sin. 63 144701 (in Chinese) [冒晓莉, 肖韶荣, 刘清惓, 李敏, 张加宏 2014 物理学报 63 144701]

    [30]

    Wang X H, Yi S T, Fu J, Lu X G, He L 2015 Acta Phys. Sin. 64 054706 (in Chinese) [王小虎, 易仕和, 付佳, 陆小革, 何霖 2015 物理学报 64 054706]

    [31]

    NOAA, NASA, USAF 1976 U. S. Standard Atmosphere (Washington D.C.: U.S. Government Printing office) pp53-63

    [32]

    Gao Y, Liu H B, Wang L, Gu G C 2013 Chin. Opt. 6 570 (in Chinese) [高雁, 刘洪波, 王丽, 顾国超 2013 中国光学 6 570]

    [33]

    Gao Y, Liu H B, Wang L, Gu G C {2014 Chin. Opt. 7 657 (in Chinese) [高雁, 刘洪波, 王丽, 顾国超 2014 中国光学 7 657]

  • [1] Luo Shi-Chao, Wu Li-Yin, Chang Yu. Mechanism analysis of magnetohydrodynamic control in hypersonic turbulent flow. Acta Physica Sinica, 2022, 71(21): 214702. doi: 10.7498/aps.71.20220941
    [2] Yao Neng-Zhi, Wang Hao, Wang Bin, Wang Xue-Sheng. Venturi-effect rotating concentrators and nonreciprocity characteristics based on transformation hydrodynamics. Acta Physica Sinica, 2022, 71(10): 104701. doi: 10.7498/aps.71.20212361
    [3] Zhao Yong, Cai Lu, Li Xue-Gang, Lü Ri-Qing. A modal interferometer based on single mode fiber-hollow core fiber-single mode fiber structure filled with alcohol and magnetic fluid for simultaneously measuring magnetic field and temperature. Acta Physica Sinica, 2017, 66(7): 070601. doi: 10.7498/aps.66.070601
    [4] Cao Jiang-Wei, Wang Rui, Wang Ying, Bai Jian-Min, Wei Fu-Lin. Measurement and study of low-frequency noise in TMR magnetic field sensor. Acta Physica Sinica, 2016, 65(5): 057501. doi: 10.7498/aps.65.057501
    [5] Yang Jie, Liu Qing-Quan, Dai Wei, Mao Xiao-Li, Zhang Jia-Hong, Li Min. Fluid dynamic analysis and experimental study of a temperature sensor array used in meteorological observation. Acta Physica Sinica, 2016, 65(9): 094209. doi: 10.7498/aps.65.094209
    [6] Chen Fu-Zhen, Qiang Hong-Fu, Miao Gang, Gao Wei-Ran. Numerical simulation of fuel dispersal into cloud and its combustion and explosion with smoothed discrete particle hydrodynamics. Acta Physica Sinica, 2015, 64(11): 110202. doi: 10.7498/aps.64.110202
    [7] Sun Peng-Nan, Li Yun-Bo, Ming Fu-Ren. Numerical simulation on the motion characteristics of freely rising bubbles using smoothed particle hydrodynamics method. Acta Physica Sinica, 2015, 64(17): 174701. doi: 10.7498/aps.64.174701
    [8] Chen Fu-Zhen, Qiang Hong-Fu, Gao Wei-Ran. Numerical simulation of heat transfer in gas-particle two-phase flow with smoothed discrete particle hydrodynamics. Acta Physica Sinica, 2014, 63(23): 230206. doi: 10.7498/aps.63.230206
    [9] Lei Juan-Mian, Huang Can. An improved pre-processing method for somooth particle hydrodynamics. Acta Physica Sinica, 2014, 63(14): 144702. doi: 10.7498/aps.63.144702
    [10] Mao Xiao-Li, Xiao Shao-Rong, Liu Qing-Quan, Li Min, Zhang Jia-Hong. Fluid dynamic analysis on solar heating error of radiosonde humidity measurement. Acta Physica Sinica, 2014, 63(14): 144701. doi: 10.7498/aps.63.144701
    [11] Han Ya-Wei, Qiang Hong-Fu, Zhao Jiu-Ling, Gao Wei-Ran. A new repulsive model for solid boundary condition in smoothed particle hydrodynamics. Acta Physica Sinica, 2013, 62(4): 044702. doi: 10.7498/aps.62.044702
    [12] Jiang Yi-Min, Liu Mario. Hydrodynamic theory of grains, water and air. Acta Physica Sinica, 2013, 62(20): 204501. doi: 10.7498/aps.62.204501
    [13] Qiang Hong-Fu, Liu Kai, Chen Fu-Zhen. Numerical implementation of deformation and motion of droplet at the interface between vapor and solid surface with smoothed particle hydrodynamics methodology. Acta Physica Sinica, 2012, 61(20): 204701. doi: 10.7498/aps.61.204701
    [14] Chen Lin-Hui, Rao Chang-Hui. Error analysis of correlating Shack-Hartmann wave-front sensor for a point source. Acta Physica Sinica, 2011, 60(9): 090701. doi: 10.7498/aps.60.090701
    [15] Ma Tian-Peng, Hu Li-Qun, Chen Kai-Yun. Application of wavelet transform in the dynamic frequency spectrum analysis of magnetohydrodynamics oscillations on HT-7 Tokamak. Acta Physica Sinica, 2010, 59(10): 7209-7213. doi: 10.7498/aps.59.7209
    [16] Wang Min, Cen Yu-Wan, Hu Xiao-Fang, Yu Xiao-Liu, Zhu Pei-Ping. Error mechanism of light source for synchrotron radiation computed tomography technique. Acta Physica Sinica, 2008, 57(10): 6202-6206. doi: 10.7498/aps.57.6202
    [17] Wang Min, Hu Xiao-Fang, Wu Xiao-Ping. Analysis of contrast error mechanism for synchrotron radiation computed-tomography technique. Acta Physica Sinica, 2006, 55(8): 4065-4069. doi: 10.7498/aps.55.4065
    [18] YU XI-FENG, HU HUO-SHENG, HE LI-DUAN, JIANG ZHENG, LIU XIANG, HU ZHUANG-QI. MICROSTRUCTURAL FEATURE OF NANOPHASE Sn-Bi PARTICLES PRODUCED BY AN ELECTROHYDRODYNAMIC TECHNIQUE. Acta Physica Sinica, 1999, 48(6): 1030-1036. doi: 10.7498/aps.48.1030
    [19] KUANG GUANG-LI, G.WAIDMANN. THE PROPERTIES OF THE MHD OSCILLATIONS IN TEXTOR TOKAMAK PLASMAS. Acta Physica Sinica, 1994, 43(9): 1466-1475. doi: 10.7498/aps.43.1466
    [20] XIE XUE-GANG, CHEN SHI-GANG, HONG CHAO-SHENG. HYDRODYNAMIC EQUATION FOR A SUPERCONDUCTOR. Acta Physica Sinica, 1990, 39(4): 632-638. doi: 10.7498/aps.39.632
Metrics
  • Abstract views:  4872
  • PDF Downloads:  167
  • Cited By: 0
Publishing process
  • Received Date:  01 February 2016
  • Accepted Date:  03 March 2016
  • Published Online:  05 June 2016

/

返回文章
返回