Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characteristic method to infer the high-pressure sound speed in a nonsymmetric impact and release experiment

Pan Hao Wu Zi-Hui Hu Xiao-Mian

Citation:

Characteristic method to infer the high-pressure sound speed in a nonsymmetric impact and release experiment

Pan Hao, Wu Zi-Hui, Hu Xiao-Mian
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Sound speed is of great importance for high velocity impact phenomena because it is a fundamental parameter to deduce the shear moduli, strengths and phase transitions of materials at high pressure. It has attracted much attention because of significant challenges to experiment and simulation. In practice, with the development of laser interferometer measurement system, one can obtain velocity-time histories of windowed-surfaces or free surfaces with high resolution in shock or ramp compression and unload experiments. This development provides a possible way to infer the sound speed from these velocity profiles. The key problem is to build valid analysis technique to extract the sound speed. Commonly used Lagrangian analysis methods include backward integration method, incremental impedance matching method, transfer function method and backward characteristic analysis method. However, all of these methods hardly infer the right results from the nonsymmetric impact and release experiment with only one depth of material due to the complex impedance mismatch among a flyer, sample and window. Some decreasing impedance mismatch techniques have been developed for the experiments including reverse impact or using a high strength flyer, but these techniques will limit the pressure range or need a newly designed gun with large caliber. In fact, the traditional backward characteristic analysis method only considers the sample/window interaction while bending of the incoming characteristics due to impedance difference between the flyer and sample is always ignored, which causes a distortion to the loading condition of samples. Thus in this work, we add forward characteristics to describe rarefaction wave reflection at the flyer/sample interface. Then a reasonable loading-releasing in-situ velocity profile of the interface can be derived from this improvement. We use the improved/tradition characteristics and incremental impedance matching method to analyze a synthetic nonsymmetric impact experiment in which the flyer, sample and window are of Al, Cu and LiF, respectively. Synthetic analyses suggest that the modified characteristic method can give more accurate results including sound speed-particle velocity and release path at high pressure. Compared with other methods, the new characteristic method just needs to know the release path of flyer and window that can be calibrated by well-developed technique, moreover, this method also does not need to know the form of equation of state and constitutive model of the sample. Calculation of this method is not complex and the iterative approach usually achieves convergence in less than 10 steps. All of these features will facilitate using this method to infer sound speed from the velocity profile of nonsymmetric impact experiments.
      Corresponding author: Hu Xiao-Mian, hu_xiaomian@iapcm.ac.cn
    [1]

    Asay J R, Kerley G I 1987 Int. J. Impact Eng. 5 69

    [2]

    Yu Y Y, Tan Y, Dai C D, Li X M, Li Y H, Tan H 2014 Acta Phys. Sin. 63 026202 (in Chinese) [俞宇颖, 谭叶, 戴诚达, 李雪梅, 李英华, 谭华 2014 物理学报 63 026202]

    [3]

    Hu J B, Zhou X M, Tan H, Li J B, Dai C D 2008 Appl. Phys. Lett. 92 111905

    [4]

    Huang H, Asay J R 2005 J. Appl. Phys. 98 033524

    [5]

    Furnish M D, Alexander C S, Brown J L, Reinhart W D 2014 J. Appl. Phys. 115 033511

    [6]

    Tan Y, Yu Y Y, Dai C D, Yu J D, Wang Q S, Tan H 2013 Acta Phys. Sin. 62 036401 (in Chinese) [谭叶, 俞宇颖, 戴诚达, 于继东, 王青松, 谭华 2013 物理学报 62 036401]

    [7]

    Pan H, Hu X M, Wu Z H, Dai C D, Wu Q 2012 Acta Phys. Sin. 61 206401 (in Chinese) [潘昊, 胡晓棉, 吴子辉, 戴诚达, 吴强 2012 物理学报 61 206401]

    [8]

    Asay J R, Lipkin J 1978 J. Appl. Phys. 49 4242

    [9]

    Hayes D B, Hall C A, Asay J R, Knudson M D 2004 J. Appl. Phys. 96 5520

    [10]

    Rothman S D, Davis J P, Maw J, Robinson C M, Parker K, Palmer J 2005 J. Phys. D 38 733

    [11]

    Brown J L, Alexander C S, Asay J R, Vogler T J, Ding J L 2013 J. Appl. Phys. 114 223518

    [12]

    Brown J L, Alexander C S, Asay J R, Vogler T J, Dolan D H, Belof J L 2014 J. Appl. Phys. 115 043530

    [13]

    Rothman S, Edwards R, Vogle, T J, Furnish M D 2012 Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter Chicago, United States, June 26-July 1, 2011 p104

    [14]

    Pan H, Hu X M, Wu Z H 2015 EPJ Web Conf. 94 01007

    [15]

    Lowe M R, Rothman S D, Chapman D, Robinson C 2014 J. Phys. Conf. Series 500 112043

    [16]

    Rothman S D, Davis J P, Gooding S, Knudson M D, Ao T 2014 J. Phys. Conf. Series 500 032016

    [17]

    Tan H 2006 Introduction to Experimental Shock-Wave Physics (Beijing: National Defense Industry Press) p160 (in Chinese) [谭华 2006 实验冲击波物理导引(北京:国防工业出版社) 第160页]

    [18]

    Duffy T S, Ahrens T J 1995 J. Geophys. Res. 100 529

    [19]

    Casem D T, Dandekar D P 2012 J. Appl. Phys. 111 063508

    [20]

    Li W X 2003 One-Dimensional Nonsteady Flow and Shock Waves (Beijing: National Defense Industry Press) p98, p215 (in Chinese) [李维新 2003 一维不定常流与冲击波(北京:国防工业出版社) 第 98, 215 页]

    [21]

    Steinberg D J, Cochran S G, Guinan M W 1980 J. Appl. Phys. 51 1498

    [22]

    Fratanduono D E, Boehly T R, Barrios M A, Meyerhofer D D, Eggert J H, Smith R F, Hicks D G, Celliers P M, Braun D G, Collins G W 2011 J. Appl. Phys. 109 123521

  • [1]

    Asay J R, Kerley G I 1987 Int. J. Impact Eng. 5 69

    [2]

    Yu Y Y, Tan Y, Dai C D, Li X M, Li Y H, Tan H 2014 Acta Phys. Sin. 63 026202 (in Chinese) [俞宇颖, 谭叶, 戴诚达, 李雪梅, 李英华, 谭华 2014 物理学报 63 026202]

    [3]

    Hu J B, Zhou X M, Tan H, Li J B, Dai C D 2008 Appl. Phys. Lett. 92 111905

    [4]

    Huang H, Asay J R 2005 J. Appl. Phys. 98 033524

    [5]

    Furnish M D, Alexander C S, Brown J L, Reinhart W D 2014 J. Appl. Phys. 115 033511

    [6]

    Tan Y, Yu Y Y, Dai C D, Yu J D, Wang Q S, Tan H 2013 Acta Phys. Sin. 62 036401 (in Chinese) [谭叶, 俞宇颖, 戴诚达, 于继东, 王青松, 谭华 2013 物理学报 62 036401]

    [7]

    Pan H, Hu X M, Wu Z H, Dai C D, Wu Q 2012 Acta Phys. Sin. 61 206401 (in Chinese) [潘昊, 胡晓棉, 吴子辉, 戴诚达, 吴强 2012 物理学报 61 206401]

    [8]

    Asay J R, Lipkin J 1978 J. Appl. Phys. 49 4242

    [9]

    Hayes D B, Hall C A, Asay J R, Knudson M D 2004 J. Appl. Phys. 96 5520

    [10]

    Rothman S D, Davis J P, Maw J, Robinson C M, Parker K, Palmer J 2005 J. Phys. D 38 733

    [11]

    Brown J L, Alexander C S, Asay J R, Vogler T J, Ding J L 2013 J. Appl. Phys. 114 223518

    [12]

    Brown J L, Alexander C S, Asay J R, Vogler T J, Dolan D H, Belof J L 2014 J. Appl. Phys. 115 043530

    [13]

    Rothman S, Edwards R, Vogle, T J, Furnish M D 2012 Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter Chicago, United States, June 26-July 1, 2011 p104

    [14]

    Pan H, Hu X M, Wu Z H 2015 EPJ Web Conf. 94 01007

    [15]

    Lowe M R, Rothman S D, Chapman D, Robinson C 2014 J. Phys. Conf. Series 500 112043

    [16]

    Rothman S D, Davis J P, Gooding S, Knudson M D, Ao T 2014 J. Phys. Conf. Series 500 032016

    [17]

    Tan H 2006 Introduction to Experimental Shock-Wave Physics (Beijing: National Defense Industry Press) p160 (in Chinese) [谭华 2006 实验冲击波物理导引(北京:国防工业出版社) 第160页]

    [18]

    Duffy T S, Ahrens T J 1995 J. Geophys. Res. 100 529

    [19]

    Casem D T, Dandekar D P 2012 J. Appl. Phys. 111 063508

    [20]

    Li W X 2003 One-Dimensional Nonsteady Flow and Shock Waves (Beijing: National Defense Industry Press) p98, p215 (in Chinese) [李维新 2003 一维不定常流与冲击波(北京:国防工业出版社) 第 98, 215 页]

    [21]

    Steinberg D J, Cochran S G, Guinan M W 1980 J. Appl. Phys. 51 1498

    [22]

    Fratanduono D E, Boehly T R, Barrios M A, Meyerhofer D D, Eggert J H, Smith R F, Hicks D G, Celliers P M, Braun D G, Collins G W 2011 J. Appl. Phys. 109 123521

  • [1] Hua Ying-Xin, Liu Fu-Sheng, Geng Hua-Yun, Hao Long, Yu Ji-Dong, Tan Ye, Li Jun. Kinetics of iron α-εphase transition under thermodynamic path of multiple shock loading-unloading. Acta Physica Sinica, 2021, 70(16): 166201. doi: 10.7498/aps.70.20210089
    [2] Pan Hao, Wang Sheng-Tao, Wu Zi-Hui, Hu Xiao-Mian. Effect of twining on dynamic behaviors of beryllium materials under impact loading and unloading. Acta Physica Sinica, 2018, 67(16): 164601. doi: 10.7498/aps.67.20180451
    [3] Li Xue-Mei, Yu Yu-Ying, Tan Ye, Hu Chang-Ming, Zhang Zu-Gen, Lan Qiang, Fu Qiu-Wei, Jing Hai-Hua. Softening of sound velocity and Hugoniot parameter measurement for shocked bismuth in the solid-liquid mixing pressure zone. Acta Physica Sinica, 2018, 67(4): 046401. doi: 10.7498/aps.67.20172166
    [4] Liu Xiao-Yu, Zhang Guo-Hua, Sun Qi-Cheng, Zhao Xue-Dan, Liu Shang. Numerical study on acoustic behavior of two-dimensional granular system. Acta Physica Sinica, 2017, 66(23): 234501. doi: 10.7498/aps.66.234501
    [5] Zhang Pan, Zhao Xue-Dan, Zhang Guo-Hua, Zhang Qi, Sun Qi-Cheng, Hou Zhi-Jian, Dong Jun-Jun. Acoustic detection and nonlinear response of granular materials under vertical vibrations. Acta Physica Sinica, 2016, 65(2): 024501. doi: 10.7498/aps.65.024501
    [6] Qu Pu-Bo, Guan Xiao-Wei, Zhang Zhen-Rong, Wang Sheng, Li Guo-Hua, Ye Jing-Feng, Hu Zhi-Yun. Laser induced thermal grating spectroscopy thermometry technique. Acta Physica Sinica, 2015, 64(12): 123301. doi: 10.7498/aps.64.123301
    [7] Song Ping, Cai Ling-Cang, Li Xin-Zhu, Tao Tian-Jiong, Zhao Xin-Wen, Wang Xue-Jun, Fang Mao-Lin. Sound velocity and phase transition for low porosity tin at high pressure. Acta Physica Sinica, 2015, 64(10): 106401. doi: 10.7498/aps.64.106401
    [8] Wang Wen-Peng, Liu Fu-Sheng, Zhang Ning-Chao. Structural transformation of liquid water under shock compression condition. Acta Physica Sinica, 2014, 63(12): 126201. doi: 10.7498/aps.63.126201
    [9] Yu Yu-Ying, Tan Ye, Dai Cheng-Da, Li Xue-Mei, Li Ying-Hua, Tan Hua. Sound velocities of vanadium under shock compression. Acta Physica Sinica, 2014, 63(2): 026202. doi: 10.7498/aps.63.026202
    [10] Wang Yong, Lin Shu-Yu, Zhang Xiao-Li. Linear wave propagation in the bubbly liquid. Acta Physica Sinica, 2013, 62(6): 064304. doi: 10.7498/aps.62.064304
    [11] Zhang Qi, Li Yin-Chang, Liu Rui, Jiang Yi-Min, Hou Mei-Ying. Acoustic probing of the granular solid system under direct shear. Acta Physica Sinica, 2012, 61(23): 234501. doi: 10.7498/aps.61.234501
    [12] Yu Yu-Ying, Xi Feng, Dai Cheng-Da, Cai Ling-Cang, Tan Hua, Li Xue-Mei, Hu Chang-Ming. Plastic behavior of Zr51Ti5Ni10Cu25Al9 metallic glass under planar shock loading. Acta Physica Sinica, 2012, 61(19): 196202. doi: 10.7498/aps.61.196202
    [13] Wang Xin-Feng, Xiong Xian-Chao, Gao Min-Zhong. Experimental method of measuring sound velocity using ultrasonic flowmeter. Acta Physica Sinica, 2011, 60(11): 114303. doi: 10.7498/aps.60.114303
    [14] Song Ping, Wang Qing-Song, Dai Cheng-Da, Cai Ling-Cang, Zhang Yi, Weng Ji-Dong. Sound velocity and shock melting of low porosity aluminum. Acta Physica Sinica, 2011, 60(4): 046201. doi: 10.7498/aps.60.046201
    [15] Deng Xiao-Liang, Zhu Wen-Jun, Song Zhen-Fei, He Hong-Liang, Jing Fu-Qian. Microscopic mechanism of void coalescence under shock loading. Acta Physica Sinica, 2009, 58(7): 4772-4778. doi: 10.7498/aps.58.4772
    [16] Zhu Ming, Wang Shu, Wang Shu-Tao, Xia Dong-Hai. An acoustic gas concentration measurement algorithm for carbon monoxide in mixtures based on molecular multi-relaxation model. Acta Physica Sinica, 2008, 57(9): 5749-5755. doi: 10.7498/aps.57.5749
    [17] Lu Yi-Gang, Peng Jian-Xin. Study of acoustical properties of supercritical carbon dioxide using liquid acoustical theory. Acta Physica Sinica, 2008, 57(2): 1030-1036. doi: 10.7498/aps.57.1030
    [18] Luo Ben-Yi, Lu Yi-Gang. Study of sound speed in near-critical carbon dioxide. Acta Physica Sinica, 2008, 57(7): 4397-4401. doi: 10.7498/aps.57.4397
    [19] Chen Jun, Xu Yun, Chen Dong-Quan, Sun Jin-Shan. Multi-scale simulation of the dynamic behaviors of nano-void in shocked material. Acta Physica Sinica, 2008, 57(10): 6437-6443. doi: 10.7498/aps.57.6437
    [20] Deng Xiao-Liang, Zhu Wen-Jun, He Hong-Liang, Wu Deng-Xue, Jing Fu-Qian. Initial dynamic behavior of nano-void growth in single-crystal copper under shock loading along 〈111〉 direction. Acta Physica Sinica, 2006, 55(9): 4767-4773. doi: 10.7498/aps.55.4767
Metrics
  • Abstract views:  4945
  • PDF Downloads:  111
  • Cited By: 0
Publishing process
  • Received Date:  19 January 2016
  • Accepted Date:  16 March 2016
  • Published Online:  05 June 2016

/

返回文章
返回