Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Measuring the internal temperature of dielectrics machined by the ultrashort laser pulse through the black-body irradiation method

Wang Cheng-Wei Zhao Quan-Zhong Qian Jing Huang Yuan-Yuan Wang Guan-De Li Yang-Bo Bai Feng Fan Wen-Zhong Li Hong-Jin

Citation:

Measuring the internal temperature of dielectrics machined by the ultrashort laser pulse through the black-body irradiation method

Wang Cheng-Wei, Zhao Quan-Zhong, Qian Jing, Huang Yuan-Yuan, Wang Guan-De, Li Yang-Bo, Bai Feng, Fan Wen-Zhong, Li Hong-Jin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Black-body irradiation method can be utilized for measuring the instantaneous temperatures of electrons and lattice in dielectric machined by the ultrashort laser. One ultrashort laser pulse, of which the pulse energy and pulse duration are 240 J and 599 fs respectively, is focused into the fused silica by objective lenses with a magnification of 10 times. The focal point is at the position of 874 m. The microstructure induced by laser near the focal point is 16 m wide and 104 m long. The central region of the microstructure is heavily damaged, and the marginal region is slightly modified. The black-body irradiation spectra are recorded by the system that is composed of objective lenses, a fiber with two lenses, a spectrometer and an intensified charge coupled device (ICCD). Furthermore, other imaging elements can also be used as alternative to objective lenses, for measuring black-body spectra. The image point, which is conjunctive with the machined region due to the imaging effect of the objective lenses, is coupled into the fiber by one lens. Another lens collimates the diverging light beam from the fiber. The collimated light is incident into the spectrometer and dispersed on the ICCD. Because the minimum gate width of ICCD is much larger than the coupled time of electron and lattice, the temperature of electron equals that of lattice when they are characterized by the black-body irradiation method. The temperatures of the electrons and the lattice are regarded as the temperature of dielectric. When the system acquires the reflection peak of incident ultrashort laser, the delay is set to be 0 ns, and the central wavelength of the peak is 784 nm. Therefore, to eliminate the reflection peak, the second harmonic and supercontinuum spectra, the delay for black-body irradiation acquirement is set to be above 6 ns and the machined region should be confined inside the dielectric. The system collects the black-body spectra emitted by the heat-affected zone in fused silica 981 ns after the fused silica has been irradiated by single ultrashort laser pulse. And then the spectra are fitted by the Planck formula to obtain the temperature of dielectric. After the dielectric is processed by the ultrashort laser pulse, the valence electrons of the dielectric transit to the conduction band via strong filed ionization and avalanche ionization. The plasma with high temperature and pressure moves outward in the form of shockwave. The shockwave transfers energy by convection after fused silica has been machined by laser pulse. Due to inverse Bremsstrahlung effect during the avalanche ionization, nearly all the incident laser energy is absorbed by the fused silica. The irradiated energy is only 1.3% of the absorbed energy, so the ways of heat transfer are mainly convection and heat diffusion. 21 ns later the shock wave turns into acoustic wave, so central gaseous fused silica affects the surrounding region through heat diffusion and the temperature of fused silica decreases slowly. The temperature of fused silica is 5333 exp(-t/1289) K at time t (unit: ns). The temperature drops down to room temperature 3.72s after the fused silica has been irradiated by one ultrashort laser pulse. If another laser pulse arrives at fused silica before 3.72s, the temperature rises on the basis of the previous laser pulse. In other words, the heat accumulation effect cannot be ignored if the repetition rate of ultrashort laser is more than 269 kHz.
      Corresponding author: Zhao Quan-Zhong, zqz@siom.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11374316).
    [1]

    Sugioka K, Cheng Y 2013 (Boca Raton: CRC Press) p6

    [2]

    Balling P, Schou J 2013 Rep. Prog. Phys. 76 036502

    [3]

    Wang C W, Zhao Q Z, Zhang Y, Wang G D, Qian J, Bao Z J, Li Y B, Bai F, Fan W Z 2015 Acta Phys. Sin. 64 205204 (in Chinese) [王承伟, 赵全忠, 张扬, 王关德, 钱静, 鲍宗杰, 李阳博, 柏锋, 范文中 2015 物理学报 64 205204]

    [4]

    Chimier B, Uteza O, Sanner N, Sentis M, Itina T, Lassonde P, Legare F, Vidal F, Kieffer J C 2011 Phys. Rev. B 84 1

    [5]

    Jiang L, Tsai H L 2008 J. Appl. Phys. 104 093101

    [6]

    Wang C, Zhao Q, Qian J, Li Y, Wang G, Zhang Y, Pan H, Bao Z, Bai F, Fan W 2015 Proc. SPIE 9532 Shanghai, May 17, 2015 p953200

    [7]

    Chichkov B N, Momma C, Nolte S, Alvensleben F V, Tunnermann A 1996 Appl. Phys. A 63 109

    [8]

    Liu J, Schroeder H, Chin S L, Li R, Yu W, Xu Z 2005 Phys. Rev. A 72 1

    [9]

    Ji Z G 2010 Ph. D. Dissertation (Beijing: Chinese Academy of Sciences) (in Chinese) [季忠刚 2010 博士学位论文 (北京: 中国科学院)]

    [10]

    Toftmann B, Schou J, Hansen T T, Lunney J G 2000 Phys. Rev. Lett. 84 3998

    [11]

    Tran K A, Grigorov Y V, Nguyen V H, Rehman Z U, Le N T, Janulewicz K A 2015 Proc. SPIE 9532 Shanghai, May 17, 2015 p953205

    [12]

    Puerto D, Siegel J, Gawelda W, Galvan-Sosa M, Ehrentraut L, Bonse J, Solis J 2010 J. Opt. Soc. Am. B 27 1065

    [13]

    Nakimana A, Tao H Y, Hao Z Q, Sun C K, Xun G, Lin J Q 2013 Chin. Phys. B 22 14209

    [14]

    Chen M, Li S, Cui Q Q, Liu X D 2013 Chin. Phys. B 22 106101

    [15]

    Carr C W, Radousky H B, Rubenchik A M, Feit M D, Demos S G 2004 Phys. Rev. Lett. 92 087401

    [16]

    Momma C, Nolte S, Chichkov B N, Alvensleben F V, Tnnermann A 1997 Appl. Surf. Sci. 109 15

    [17]

    Carr C W, Feit M D, Rubenchik A M, Mange P D, Kucheyev S O, Shirk M D, Radousky H B, Demos S G 2005 Opt. Lett. 30 661

    [18]

    Carr C W, Feit M D, Rubenchik A M, Demange P P, Kucheyev S O, Shirk M D, Radousky H B, Demos S G 2005 Proc. SPIE 5647 494

    [19]

    Linde D V D 1994 Laser Interactions with Atoms, Solids and Plasmas (New York: Plenum Press) p207

    [20]

    Sanz M, Castillejo M, Amoruso S, Ausanio G, Bruzzese R, Wang X 2010 Appl. Phys. A 101 639

    [21]

    Amoruso S, Bruzzese R, Spinelli N, Velotta R, Vitiello M, Wang X, Ausanio G, Iannotti V, Lanotte L 2004 Appl. Phys. Lett. 84 4502

    [22]

    Albert O, Roger S, Glinec Y, Loulergue J C, Etchepare J, Boulmer-Leborgne C, Perrire J, Millon E 2003 Appl. Phys. A 76 319

    [23]

    Zhao Q Z, Qiu J R 2005 Physics 34 660 (in Chinese) [赵全忠, 邱建荣 2005 物理 34 660]

    [24]

    Luo F F, Song J, Hu X, Sun H Y, Lin G, Pan H H, Cheng Y, Liu L, Qiu J R, Zhao Q Z, Xu Z Z 2011 Opt. Lett. 36 2125

    [25]

    He F, Cheng Y 2007 Chin. J. Lasers 34 595 (in Chinese) [何飞, 程亚 2007 中国激光 34 595]

    [26]

    Malitson I H 1965 J. Opt. Soc. Am. 55 1205

    [27]

    Shimotsuma Y, Hirao K, Kazansky P G, Qiu J 2005 Jpn. J. Appl. Phys. 44 4735

    [28]

    Wu S, Wu D, Xu J, Hanada Y, Suganuma R, Wang H, Makimura T, Sugioka K, Midorikawa K 2012 Opt. Express 20 28893

    [29]

    Pan J L 1994 Glass Technology (Beijing: China Light Industry Press) p81 (in Chinese) [潘金龙 1994 玻璃工艺学 (北京: 中国轻工业出版社) 第81页]

    [30]

    Eaton S M, Zhang H B, Herman P R, Yoshino F 2005 Opt. Express 13 4708

    [31]

    Tzortzakis S, Sudrie L, Franco M, Prade B, Mysyrowicz A, Couairon A, Berg L 2001 Phys. Rev. Lett. 87 213902

    [32]

    Sun Q, Jiang H, Liu Y, Wu Z, Yang H, Gong Q 2005 Opt. Lett. 30 320

    [33]

    Amoruso S, Ausanio G, Bruzzese R, Vitiello M, Wang X 2005 Phys. Rev. B 7 1

    [34]

    Liao Y, Zeng B, Qiao L, Liu L, Sugioka K, Cheng Y 2014 Appl. Phys. A 114 223

    [35]

    Eaton S M, Zhang H, Ng M L, Li J, Chen W J, Ho S, Herman P R 2008 Opt. Express 16 9443

  • [1]

    Sugioka K, Cheng Y 2013 (Boca Raton: CRC Press) p6

    [2]

    Balling P, Schou J 2013 Rep. Prog. Phys. 76 036502

    [3]

    Wang C W, Zhao Q Z, Zhang Y, Wang G D, Qian J, Bao Z J, Li Y B, Bai F, Fan W Z 2015 Acta Phys. Sin. 64 205204 (in Chinese) [王承伟, 赵全忠, 张扬, 王关德, 钱静, 鲍宗杰, 李阳博, 柏锋, 范文中 2015 物理学报 64 205204]

    [4]

    Chimier B, Uteza O, Sanner N, Sentis M, Itina T, Lassonde P, Legare F, Vidal F, Kieffer J C 2011 Phys. Rev. B 84 1

    [5]

    Jiang L, Tsai H L 2008 J. Appl. Phys. 104 093101

    [6]

    Wang C, Zhao Q, Qian J, Li Y, Wang G, Zhang Y, Pan H, Bao Z, Bai F, Fan W 2015 Proc. SPIE 9532 Shanghai, May 17, 2015 p953200

    [7]

    Chichkov B N, Momma C, Nolte S, Alvensleben F V, Tunnermann A 1996 Appl. Phys. A 63 109

    [8]

    Liu J, Schroeder H, Chin S L, Li R, Yu W, Xu Z 2005 Phys. Rev. A 72 1

    [9]

    Ji Z G 2010 Ph. D. Dissertation (Beijing: Chinese Academy of Sciences) (in Chinese) [季忠刚 2010 博士学位论文 (北京: 中国科学院)]

    [10]

    Toftmann B, Schou J, Hansen T T, Lunney J G 2000 Phys. Rev. Lett. 84 3998

    [11]

    Tran K A, Grigorov Y V, Nguyen V H, Rehman Z U, Le N T, Janulewicz K A 2015 Proc. SPIE 9532 Shanghai, May 17, 2015 p953205

    [12]

    Puerto D, Siegel J, Gawelda W, Galvan-Sosa M, Ehrentraut L, Bonse J, Solis J 2010 J. Opt. Soc. Am. B 27 1065

    [13]

    Nakimana A, Tao H Y, Hao Z Q, Sun C K, Xun G, Lin J Q 2013 Chin. Phys. B 22 14209

    [14]

    Chen M, Li S, Cui Q Q, Liu X D 2013 Chin. Phys. B 22 106101

    [15]

    Carr C W, Radousky H B, Rubenchik A M, Feit M D, Demos S G 2004 Phys. Rev. Lett. 92 087401

    [16]

    Momma C, Nolte S, Chichkov B N, Alvensleben F V, Tnnermann A 1997 Appl. Surf. Sci. 109 15

    [17]

    Carr C W, Feit M D, Rubenchik A M, Mange P D, Kucheyev S O, Shirk M D, Radousky H B, Demos S G 2005 Opt. Lett. 30 661

    [18]

    Carr C W, Feit M D, Rubenchik A M, Demange P P, Kucheyev S O, Shirk M D, Radousky H B, Demos S G 2005 Proc. SPIE 5647 494

    [19]

    Linde D V D 1994 Laser Interactions with Atoms, Solids and Plasmas (New York: Plenum Press) p207

    [20]

    Sanz M, Castillejo M, Amoruso S, Ausanio G, Bruzzese R, Wang X 2010 Appl. Phys. A 101 639

    [21]

    Amoruso S, Bruzzese R, Spinelli N, Velotta R, Vitiello M, Wang X, Ausanio G, Iannotti V, Lanotte L 2004 Appl. Phys. Lett. 84 4502

    [22]

    Albert O, Roger S, Glinec Y, Loulergue J C, Etchepare J, Boulmer-Leborgne C, Perrire J, Millon E 2003 Appl. Phys. A 76 319

    [23]

    Zhao Q Z, Qiu J R 2005 Physics 34 660 (in Chinese) [赵全忠, 邱建荣 2005 物理 34 660]

    [24]

    Luo F F, Song J, Hu X, Sun H Y, Lin G, Pan H H, Cheng Y, Liu L, Qiu J R, Zhao Q Z, Xu Z Z 2011 Opt. Lett. 36 2125

    [25]

    He F, Cheng Y 2007 Chin. J. Lasers 34 595 (in Chinese) [何飞, 程亚 2007 中国激光 34 595]

    [26]

    Malitson I H 1965 J. Opt. Soc. Am. 55 1205

    [27]

    Shimotsuma Y, Hirao K, Kazansky P G, Qiu J 2005 Jpn. J. Appl. Phys. 44 4735

    [28]

    Wu S, Wu D, Xu J, Hanada Y, Suganuma R, Wang H, Makimura T, Sugioka K, Midorikawa K 2012 Opt. Express 20 28893

    [29]

    Pan J L 1994 Glass Technology (Beijing: China Light Industry Press) p81 (in Chinese) [潘金龙 1994 玻璃工艺学 (北京: 中国轻工业出版社) 第81页]

    [30]

    Eaton S M, Zhang H B, Herman P R, Yoshino F 2005 Opt. Express 13 4708

    [31]

    Tzortzakis S, Sudrie L, Franco M, Prade B, Mysyrowicz A, Couairon A, Berg L 2001 Phys. Rev. Lett. 87 213902

    [32]

    Sun Q, Jiang H, Liu Y, Wu Z, Yang H, Gong Q 2005 Opt. Lett. 30 320

    [33]

    Amoruso S, Ausanio G, Bruzzese R, Vitiello M, Wang X 2005 Phys. Rev. B 7 1

    [34]

    Liao Y, Zeng B, Qiao L, Liu L, Sugioka K, Cheng Y 2014 Appl. Phys. A 114 223

    [35]

    Eaton S M, Zhang H, Ng M L, Li J, Chen W J, Ho S, Herman P R 2008 Opt. Express 16 9443

  • [1] Li Yu-Fan, Xue Wen-Qing, Li Yu-Chao, Zhan Yan-Hu, Xie Qian, Li Yan-Kai, Zha Jun-Wei. Research progress of flexible energy storage dielectric materials with sandwiched structure. Acta Physica Sinica, 2024, 73(2): 027702. doi: 10.7498/aps.73.20230614
    [2] Nong Jie, Zhang Yi-Yi, Wei Xue-Ling, Jiang Xin-Peng, Li Ning, Wang Dong-Ying, Xiao Si-Yang, Chen Hong-Ting, Zhang Zhen-Rong, Yang Jun-Bo. Research on realizing high permeability and laser stealth compatibility in visible light band with dielectric/metal/dielectric film system. Acta Physica Sinica, 2023, 72(17): 177802. doi: 10.7498/aps.72.20230855
    [3] Li Pei, Xu Jie, He Chao-Hui, Liu Jia-Xin. Experimental study on irradiation of perovskite solar cells. Acta Physica Sinica, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [4] Li Peng-Fei, Yuan Hua, Cheng Zi-Dong, Qian Li-Bing, Liu Zhong-Lin, Jin Bo, Ha Shuai, Zhang Hao-Wen, Wan Cheng-Liang, Cui Ying, Ma Yue, Yang Zhi-Hu, Lu Di, Reinhold Schuch, Li Ming, Zhang Hong-Qiang, Chen Xi-Meng. Dynamics of low energy electrons transmitting through straight glass capillary: Tilt angle dependence. Acta Physica Sinica, 2022, 71(8): 084104. doi: 10.7498/aps.71.20212335
    [5] Li Wei-Qin, Huo Zhi-Sheng, Pu Hong-Bin. Transient characteristics of electron beam induced current in dielectric and semiconductor sample. Acta Physica Sinica, 2020, 69(6): 060201. doi: 10.7498/aps.69.20191543
    [6] Qin Li, Guo Hong-Xia, Zhang Feng-Qi, Sheng Jiang-Kun, Ouyang Xiao-Ping, Zhong Xiang-Li, Ding Li-Li, Luo Yin-Hong, Zhang Yang, Ju An-An. Total ionizing dose effect of ferroelectric random access memory under Co-60 gamma rays and electrons. Acta Physica Sinica, 2018, 67(16): 166101. doi: 10.7498/aps.67.20180829
    [7] Feng Guo-Bao, Cao Meng, Cui Wan-Zhao, Li Jun, Liu Chun-Liang, Wang Fang. Transient characteristics of discharge of polymer sample after electon-beam irradiation. Acta Physica Sinica, 2017, 66(6): 067901. doi: 10.7498/aps.66.067901
    [8] Qian Li-Bing, Li Peng-Fei, Jin Bo, Jin Ding-Kun, Song Guang-Yin, Zhang Qi, Wei Long, Niu Ben, Wan Cheng-Liang, Zhou Chun-Lin, Arnold Milenko Müller, Max Dobeli, Song Zhang-Yong, Yang Zhi-Hu, Reinhold Schuch, Zhang Hong-Qiang, Chen Xi-Meng. Transmission of electrons through the conical glass capillary with the grounded conducting outer surface. Acta Physica Sinica, 2017, 66(12): 124101. doi: 10.7498/aps.66.124101
    [9] Teng Jian, Zhu Bin, Wang Jian, Hong Wei, Yan Yong-Hong, Zhao Zong-Qing, Cao Lei-Feng, Gu Yu-Qiu. Simulation of electromagnetic soliton radiography under laser-produced proton beam. Acta Physica Sinica, 2013, 62(11): 114103. doi: 10.7498/aps.62.114103
    [10] Liu Li-Hui, Zou Hong-Xin, Liu Qu, Li Xi. Blackbody-radiation shift in a 199Hg+ ion optical frequency standard. Acta Physica Sinica, 2012, 61(10): 103101. doi: 10.7498/aps.61.103101
    [11] Zhu Fang, Zhang Zhao-Chuan, Dai Shun, Luo Ji-Run. Influence of longitudinal radio frequency electric field on multipactor effect on a dielectric surface. Acta Physica Sinica, 2011, 60(8): 084103. doi: 10.7498/aps.60.084103
    [12] Li Dong-Hai, Chen Fa-Liang. Microscopic theoretical investigation on propagation and breakdown depth of ultrashort-pulse laser in dielectrics. Acta Physica Sinica, 2011, 60(6): 067804. doi: 10.7498/aps.60.067804
    [13] Feng Zhi-Gang, Zhang Hao, Zhang Lin-Jie, Li Chang-Yong, Zhao Jian-Ming, Jia Suo-Tang. Measurement of lifetime of ultracold cesium Rydberg states. Acta Physica Sinica, 2011, 60(7): 073202. doi: 10.7498/aps.60.073202
    [14] Ding Pei, Zhou Qiang, Hu Wei-Qin, Cai Gen-Wang, Liang Er-Jun. Selectable electromagnetic response modes and negative refraction in rectangular dielectric metamaterials. Acta Physica Sinica, 2011, 60(5): 054102. doi: 10.7498/aps.60.054102
    [15] Zhang Tao. A cause of energy exchange between light and electron. Acta Physica Sinica, 2009, 58(1): 234-237. doi: 10.7498/aps.58.234
    [16] Teng Jian, Hong Wei, Zhao Zong-Qing, Wu Shun-Chao, Qin Xiao-Zun, He Ying-Ling, Gu Yu-Qiu, Ding Yong-Kun. Monte-Carlo study of radiography with laser-produced proton beam. Acta Physica Sinica, 2009, 58(3): 1635-1641. doi: 10.7498/aps.58.1635
    [17] Xia Zhi-Lin, Fan Zheng-Xiu, Shao Jian-Da. Electrons-phonons collision velocity in films radiated by laser. Acta Physica Sinica, 2006, 55(6): 3007-3012. doi: 10.7498/aps.55.3007
    [18] He Bao-Ping, Chen Wei, Wang Gui-Zhen. A comparison of ionizing radiation damage in CMOS devices from 60Co Gamma rays, electrons and protons. Acta Physica Sinica, 2006, 55(7): 3546-3551. doi: 10.7498/aps.55.3546
    [19] CHENG XING-KUI, ZHOU JUN-MING, HUANG QI. WAVING OF ELECTRON IN SUPERLATTICE. Acta Physica Sinica, 2001, 50(3): 536-539. doi: 10.7498/aps.50.536
    [20] HE BIN, CHANG TIE-QIANG, ZHANG JIA-TAI, XU LIN-BAO. INVESTIGATION OF THE LONGITUDINAL MOTION OF ELECTRONS IN THE PLASMAS WITH ULTRA-INTENSE LASER PULSE. Acta Physica Sinica, 2001, 50(10): 1939-1945. doi: 10.7498/aps.50.1939
Metrics
  • Abstract views:  5349
  • PDF Downloads:  202
  • Cited By: 0
Publishing process
  • Received Date:  16 March 2016
  • Accepted Date:  08 May 2016
  • Published Online:  05 June 2016

/

返回文章
返回