Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of Ga vacancy on the magnetism in GaN:Gd: First-principles calculation

Hou Zhen-Tao Li Yan-Ru Liu He-Yan Dai Xue-Fang Liu Guo-Dong Liu Cai-Chi Li Ying

Citation:

Effect of Ga vacancy on the magnetism in GaN:Gd: First-principles calculation

Hou Zhen-Tao, Li Yan-Ru, Liu He-Yan, Dai Xue-Fang, Liu Guo-Dong, Liu Cai-Chi, Li Ying
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In recent years, GaN doped with Gd (GaN:Gd) has attracted much attention due to its potential applications in spintronic devices since the high temperature ferromagnetism and the colossal magnetic moment were observed in GaN:Gd. However, the microscopic nature of ferromagnetism in GaN:Gd still is controversial. We investigate the crystal parameters, magnetic moment, formation energies, and electronic structures of the defect complexes formed by Gd and native Ga (or N) vacancies in GaN by using the first-principles method based on the density functional theory. The calculated results show that the energy band gap of GaN:Gd becomes indirect and its width becomes small compared with that of GaN. The lattice constants of GaN:Gd expand due to the larger ionic radius of Gd than that of Ga atom, while they shrink when the Gd atom and Ga vacancies coexist. In the case of the isolated Gd dopant, the Gd-4f electrons lead to a magnetic moment of about 7 B in GaN:Gd. For the defect complex, one Ga vacancy can introduce a magnetic moment of about 2 B, while N vacancy has little effect on the total magnetic moment. In addition, when we focus on the defect complex composed of Gd and five neighboring Ga vacancies, we find that the magnetic moment of per Gd atom and the total magnetic moment depend strongly on the concentration and position of Ga vacancies. When the Ga vacancies are distributed loosely near the Gd atom, the magnetic moment of Gd atom increases slightly, while for the closely-distributed Ga vacancies the Gd magnetic moment can be increased by 2 B. We infer that the interactions among Ga vacancies result in the large magnetic moment of Gd atom. It is also found that the formation energy is very small when the Ga vacancies are distributed thickly around the Gd atom in GaN:Gd. Our results are in qualitative agreement with the results from other studies (Thiess A et al. 2012 Phys. Rev. B 86 180401; Thiess A et al. 2015 Phys. Rev. B 92 104418), where Ga vacancies were proposed to tend to cluster in GaN:Gd and induce the large magnetic moment of Gd. Moreover, the effect of distance between the Gd atom and Ga vacancies on the Gd magnetic moment is also discussed. It is found that the Gd magnetic moment is relatively large when Ga vacancies are close to the Gd atoms.
      Corresponding author: Li Ying, liyingphy@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204064 51271071) and the Scientific Research Project of Hebei Province High Level Talents in Colleges and Universities, China (Grant No. GCC2014023).
    [1]

    Morkoc H 1994 J. Appl. Phys. 76 1363

    [2]

    Davies S, Huang T S, Gass M H, Papworth A J, Joyce T B, Chalker P R 2004 Appl. Phys. Lett. 84 2556

    [3]

    Wang T X, Li Y, Liu Y M 2011 Phys. Stat. Sol. B 248 1671

    [4]

    Kang B S, Kim S, Ren F, Johnson J W, Therrien R J, Rajagopal P, Roberts J C, Piner E L, Linthicum K J, Chu S N G, Baik K, Gila B P, Abernathy C R, Pearton S J 2004 Appl. Phys. Lett. 85 2962

    [5]

    Li Q Q, Hao Q Y, Li Y, Liu G D 2013 Acta Phys. Sin. 62 017103 (in Chinese) [李倩倩, 郝秋艳, 李英, 刘国栋 2013 物理学报. 62 017103]

    [6]

    Li Q Q, Hao Q Y, Li Y, Liu G D 2013 Comput. Mater. Sci. 72 32

    [7]

    Jiang L J, Wang X L, Xiao H L, Wang Z G, Yang C B, Zhang M L 2011 Appl. Phys. A 104 429

    [8]

    Gupta S, Zaidi T, Melton A, Malguth E, Yu H B, Liu Z Q, Liu X T, Schwartz J, Ferguson I 2011 J. Appl. Phys. 110 083920

    [9]

    Jadwisienczak W M, Wang J, Tanaka H, Wu J, Palai R, Huhtinen H, Anders A 2010 J. Rare Earth 6 931

    [10]

    Teraguchi N, Suzuki A, Nanishi Y, Zhou Y K, Hashimoto M, Asahi H 2002 Solid State Commun. 122 651

    [11]

    Dhar S, Brandt O, Ramsteiner M, Sapega V F, Ploog K H 2005 Phys. Rev. Lett. 94 037205

    [12]

    Dhar S, Prez L, Brandt O, Trampert A, Ploog K H, Keller J, Beschoten B 2005 Phys. Rev. B 72 245203

    [13]

    Dhar S, Kammermeier T, Ney A, Perez L, Ploog K H, Melnikov A, Wieck A D 2006 Appl. Phys. Lett. 89 062503

    [14]

    Sofer Z, Sedmidubsky D, Moram M, Mackov A, Maryko M, Hejtmnek J, Buchal C, Hardtdegen H, Vcla M, Peřina V, Groetzschel R, Mikulics M 2011 Thin Solid Films 519 6120

    [15]

    Roever M, Malindretos J, Bedoya-Pinto A, Rizzi A, Rauch C, Tuomisto F 2011 Phys. Rev. B 84 081201

    [16]

    Wang M N, Li Q Q, Li Y 2013 J. Hebei Univ. Technol. 4 0058 (in Chinese) [王美娜, 李倩倩, 李英 2013 河北工业大学学报 4 0058]

    [17]

    Sanna S, Schmid W G, Frauenheim T, Gerstmann U 2009 Phys. Rev. B 80 104120

    [18]

    Gohda Y, Oshiyama A 2008 Phys. Rev. B 78 161201

    [19]

    Thiess A, Dederichs P H, Zeller R, Blugel S, Lambrecht W R L 2012 Phys. Rev. B 86 180401

    [20]

    Mishra J K, Dhar S, Brandt O 2010 Solid State Commun. 150 2370

    [21]

    Lozykowski H J 1993 Phys. Rev. B 48 17758

    [22]

    Davies R, Abernathy C R, Pearton S J, Norton D P, Ivill M P, Ren F 2009 Chem. Eng. Commun. 196 1030

    [23]

    Filhol J S, Jones R, Shaw M J, Briddon P R 2004 Appl. Phys. Lett. 84 2841

    [24]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [25]

    Larson P, Lambrecht W R L, Chantis A, Schilfgaarde M V 2007 Phys. Rev. B 75 045114

    [26]

    Thiess A, Blugel S, Dederichs P H, Zeller R, Lambrecht W R L 2015 Phys. Rev. B 92 104418

    [27]

    Hou Z F, Wang X L, Ikeda T, Terakura K, Oshima M, Kakimoto M, Miyata S 2012 Phys. Rev. B 85 165439

  • [1]

    Morkoc H 1994 J. Appl. Phys. 76 1363

    [2]

    Davies S, Huang T S, Gass M H, Papworth A J, Joyce T B, Chalker P R 2004 Appl. Phys. Lett. 84 2556

    [3]

    Wang T X, Li Y, Liu Y M 2011 Phys. Stat. Sol. B 248 1671

    [4]

    Kang B S, Kim S, Ren F, Johnson J W, Therrien R J, Rajagopal P, Roberts J C, Piner E L, Linthicum K J, Chu S N G, Baik K, Gila B P, Abernathy C R, Pearton S J 2004 Appl. Phys. Lett. 85 2962

    [5]

    Li Q Q, Hao Q Y, Li Y, Liu G D 2013 Acta Phys. Sin. 62 017103 (in Chinese) [李倩倩, 郝秋艳, 李英, 刘国栋 2013 物理学报. 62 017103]

    [6]

    Li Q Q, Hao Q Y, Li Y, Liu G D 2013 Comput. Mater. Sci. 72 32

    [7]

    Jiang L J, Wang X L, Xiao H L, Wang Z G, Yang C B, Zhang M L 2011 Appl. Phys. A 104 429

    [8]

    Gupta S, Zaidi T, Melton A, Malguth E, Yu H B, Liu Z Q, Liu X T, Schwartz J, Ferguson I 2011 J. Appl. Phys. 110 083920

    [9]

    Jadwisienczak W M, Wang J, Tanaka H, Wu J, Palai R, Huhtinen H, Anders A 2010 J. Rare Earth 6 931

    [10]

    Teraguchi N, Suzuki A, Nanishi Y, Zhou Y K, Hashimoto M, Asahi H 2002 Solid State Commun. 122 651

    [11]

    Dhar S, Brandt O, Ramsteiner M, Sapega V F, Ploog K H 2005 Phys. Rev. Lett. 94 037205

    [12]

    Dhar S, Prez L, Brandt O, Trampert A, Ploog K H, Keller J, Beschoten B 2005 Phys. Rev. B 72 245203

    [13]

    Dhar S, Kammermeier T, Ney A, Perez L, Ploog K H, Melnikov A, Wieck A D 2006 Appl. Phys. Lett. 89 062503

    [14]

    Sofer Z, Sedmidubsky D, Moram M, Mackov A, Maryko M, Hejtmnek J, Buchal C, Hardtdegen H, Vcla M, Peřina V, Groetzschel R, Mikulics M 2011 Thin Solid Films 519 6120

    [15]

    Roever M, Malindretos J, Bedoya-Pinto A, Rizzi A, Rauch C, Tuomisto F 2011 Phys. Rev. B 84 081201

    [16]

    Wang M N, Li Q Q, Li Y 2013 J. Hebei Univ. Technol. 4 0058 (in Chinese) [王美娜, 李倩倩, 李英 2013 河北工业大学学报 4 0058]

    [17]

    Sanna S, Schmid W G, Frauenheim T, Gerstmann U 2009 Phys. Rev. B 80 104120

    [18]

    Gohda Y, Oshiyama A 2008 Phys. Rev. B 78 161201

    [19]

    Thiess A, Dederichs P H, Zeller R, Blugel S, Lambrecht W R L 2012 Phys. Rev. B 86 180401

    [20]

    Mishra J K, Dhar S, Brandt O 2010 Solid State Commun. 150 2370

    [21]

    Lozykowski H J 1993 Phys. Rev. B 48 17758

    [22]

    Davies R, Abernathy C R, Pearton S J, Norton D P, Ivill M P, Ren F 2009 Chem. Eng. Commun. 196 1030

    [23]

    Filhol J S, Jones R, Shaw M J, Briddon P R 2004 Appl. Phys. Lett. 84 2841

    [24]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [25]

    Larson P, Lambrecht W R L, Chantis A, Schilfgaarde M V 2007 Phys. Rev. B 75 045114

    [26]

    Thiess A, Blugel S, Dederichs P H, Zeller R, Lambrecht W R L 2015 Phys. Rev. B 92 104418

    [27]

    Hou Z F, Wang X L, Ikeda T, Terakura K, Oshima M, Kakimoto M, Miyata S 2012 Phys. Rev. B 85 165439

  • [1] Ye Jian-Feng, Qing Ming-Zhe, Xiao Qing-Quan, Wang Ao-Shuang, He An-Na, Xie Quan. First-principles study of electronic structure , magnetic and optical properties of Ti, V, Co and Ni doped two-dimensional CrSi2 materials. Acta Physica Sinica, 2021, 70(22): 227301. doi: 10.7498/aps.70.20211023
    [2] Liu Xu-Yang, Zhang He-Qiu, Li Bing-Bing, Liu Jun, Xue Dong-Yang, Wang Heng-Shan, Liang Hong-Wei, Xia Xiao-Chuan. Characteristics of AlGaN/GaN high electron mobility transistor temperature sensor. Acta Physica Sinica, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [3] Qiao Jian-Liang, Xu Yuan, Gao You-Tang, Niu Jun, Chang Ben-Kang. Quantum efficiency for reflection-mode varied doping negative-electron-affinity GaN photocathode. Acta Physica Sinica, 2017, 66(6): 067903. doi: 10.7498/aps.66.067903
    [4] Liu Yang, Chai Chang-Chun, Yu Xin-Hai, Fan Qing-Yang, Yang Yin-Tang, Xi Xiao-Wen, Liu Sheng-Bei. Damage effects and mechanism of the GaN high electron mobility transistor caused by high electromagnetic pulse. Acta Physica Sinica, 2016, 65(3): 038402. doi: 10.7498/aps.65.038402
    [5] Li Qian-Qian, Hao Qiu-Yan, Li Ying, Liu Guo-Dong. Theory study of rare earth (Ce, Pr) doped GaN in electronic structrue and optical property. Acta Physica Sinica, 2013, 62(1): 017103. doi: 10.7498/aps.62.017103
    [6] Wang Du-Yang, Sun Hui-Qing, Xie Xiao-Yu, Zhang Pan-Jun. Theoretical study of luminance of GaN quantum dots planted in quantum well. Acta Physica Sinica, 2012, 61(22): 227303. doi: 10.7498/aps.61.227303
    [7] Wu Hai-Ping, Chen Dong-Guo, Huang De-Cai, Deng Kai-Ming. Electronic and magnetic properties of SrCoO3:the first principles study. Acta Physica Sinica, 2012, 61(3): 037101. doi: 10.7498/aps.61.037101
    [8] Tan Xing-Yi, Chen Chang-Le, Jin Ke-Xin, Gao Yan-Jun. Electronic structure and magnetic properties in C-doped BaTiO3: A first-principles calculations. Acta Physica Sinica, 2012, 61(24): 247102. doi: 10.7498/aps.61.247102
    [9] Qiao Jian-Liang, Chang Ben-Kang, Qian Yun-Sheng, Gao Pin, Wang Xiao-Hui, Xu Yuan. Comprehensive Survey for the Frontier Disciplines. Acta Physica Sinica, 2011, 60(10): 107901. doi: 10.7498/aps.60.107901
    [10] Wang Jiang-Long, Ge Zhi-Qi, Li Hui-Ling, Liu Hong-Fei, Yu Wei. Electronic structure and magnetic propertiesof post-perovskite CaRhO3. Acta Physica Sinica, 2011, 60(4): 047107. doi: 10.7498/aps.60.047107
    [11] Qiao Jian-Liang, Chang Ben-Kang, Qian Yun-Sheng, Wang Xiao-Hui, Li Biao, Xu Yuan. Photoemission mechanism of GaN vacuum surface electron source. Acta Physica Sinica, 2011, 60(12): 127901. doi: 10.7498/aps.60.127901
    [12] Tan Xing-Yi, Chen Chang-Le, Jin Ke-Xin, Chen Peng. Ferromagnetism properties in nitrogen-doped titanate: A first principles calculations. Acta Physica Sinica, 2011, 60(12): 127102. doi: 10.7498/aps.60.127102
    [13] Qiao Jian-Liang, Tian Si, Chang Ben-Kang, Du Xiao-Qing, Gao Pin. Activation mechanism of negative electron affinity GaN photocathode. Acta Physica Sinica, 2009, 58(8): 5847-5851. doi: 10.7498/aps.58.5847
    [14] Xing Hai-Ying, Fan Guang-Han, Zhou Tian-Ming. Electronic and magnetic properties of p,n type dopant and Mn co-doped GaN. Acta Physica Sinica, 2009, 58(5): 3324-3330. doi: 10.7498/aps.58.3324
    [15] Zhou Mei, Zhao De-Gang. Effect of p-GaN layer thickness on the performance of p-i-n structure GaN ultraviolet photodetectors. Acta Physica Sinica, 2008, 57(7): 4570-4574. doi: 10.7498/aps.57.4570
    [16] Zhou Mei, Zuo Shu-Hua, Zhao De-Gang. A new Schottky barrier structure of GaN-based ultraviolet photodetector. Acta Physica Sinica, 2007, 56(9): 5513-5517. doi: 10.7498/aps.56.5513
    [17] Song Shu-Fang, Chen Wei-De, Xu Zhen-Jia, Xu Xu-Rong. Study on optical properties of Er/Er+O doped GaN thin films. Acta Physica Sinica, 2007, 56(3): 1621-1626. doi: 10.7498/aps.56.1621
    [18] Shen Ye, Xing Huai-Zhong, Yu Jian-Guo, Lü Bin, Mao Hui-Bing, Wang Ji-Qing. Curie-temperature modulation by polarization-induced built-in electric fields in Mn δ-doped GaN/AlGaN quantum wells. Acta Physica Sinica, 2007, 56(6): 3453-3457. doi: 10.7498/aps.56.3453
    [19] Wan Wei, Tang Chun-Yan, Wang Yu-Mei, Li Fang-Hua. A study on the stacking fault in GaN crystals by high-resolution electron microscope imaging. Acta Physica Sinica, 2005, 54(9): 4273-4278. doi: 10.7498/aps.54.4273
    [20] Hao Jing-An, Zheng Hao-Ping. Theoretical calculation of structures and properties of Ga6N6 cluster. Acta Physica Sinica, 2004, 53(4): 1044-1049. doi: 10.7498/aps.53.1044
Metrics
  • Abstract views:  5043
  • PDF Downloads:  271
  • Cited By: 0
Publishing process
  • Received Date:  10 January 2016
  • Accepted Date:  07 April 2016
  • Published Online:  05 June 2016

/

返回文章
返回