Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular beam epitaxy growth of multilayer FeSe thin film on SrTiO3 (001)

Zhang Ma-Lin Ge Jian-Feng Duan Ming-Chao Yao Gang Liu Zhi-Long Guan Dan-Dan Li Yao-Yi Qian Dong Liu Can-Hua Jia Jin-Feng

Citation:

Molecular beam epitaxy growth of multilayer FeSe thin film on SrTiO3 (001)

Zhang Ma-Lin, Ge Jian-Feng, Duan Ming-Chao, Yao Gang, Liu Zhi-Long, Guan Dan-Dan, Li Yao-Yi, Qian Dong, Liu Can-Hua, Jia Jin-Feng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Single-layer FeSe film grown on SrTiO3(001) surface (STO surface) by molecular beam epitaxy has aroused a great research boom ever since the discovery of its huge superconductive energy gap which indicates a possible critical temperature (Tc) higher than the liquid nitrogen temperature. The interface enhanced superconductivity with a Tc above 100 K is revealed in an in situ electrical transport measurement by using a four-point probe installed in a scanning tunneling microscope (STM). Consequent research interest in multi-layer FeSe films grown on STO surface is also increasing. The quality of thick FeSe film, however, has not been well studied yet in previous studies, although it is related to the sample properties including superconductivity. Here, reflection high-energy electron diffraction (RHEED) is used to monitor the growths of multi-layer FeSe thin films on STO surface under different growth conditions. Combing the RHEED results with STM observations taken at various FeSe coverages, we find that the intensity evolution of the RHEED pattern in the early growth stage can be well explained by the step density model but not by the widely known facet model. The intensity evolution of the FeSe(02) diffraction streak exhibits a single-peak oscillation in the growing of the first layer of FeSe. As the oscillation does not depend on the grazing angle of the high-energy electron beam, the FeSe(02) diffraction streak is very suitable for calibrating the FeSe growth rate. In contrast, the intensity of the specular spot exhibits different evolution pattern when the grazing angle of electron beam is changed. It is found in STM observations that only at an appropriate substrate temperature and a growth rate can the high-quality multi-layer FeSe films be grown on STO substrates. If the growth temperature is too high, the FeSe molecules nucleate into islands so that FeSe films with various thickness values eventually come into being on the STO surface. If the growth temperature is too low, a different phase of FeSe film is formed. The optimal growth temperature is in a range from 400 ℃ to 430 ℃, within which a two-layer FeSe film grown at a low rate (0.15 layer/min) coveres the whole STO surface with a negligible number of small FeSe islands. In contrast, a larger growth rate is necessary for growing thicker FeSe film. This is because FeSe islands tend to come into form at steps when the growth rate is too low, which is more distinct in a thicker FeSe film. An STM image of 80-layer FeSe film grown under an optimal condition, i.e., the substrate temperature of 420 ℃ and the growth rate of 2.3 layer/min, shows that it is in a perfect layer-by-layer growth mode. These experimental results are useful for growing high-quality multi-layer FeSe films on STO substrates, which could be critical for studying their physical properties and relevant physical phenomena.
      Corresponding author: Liu Can-Hua, canhualiu@sjtu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2013CB921902, 2012CB927401, 2011CB922202), the National Natural Science Foundation of China (Grant Nos. 11521404, 11134008, 11574201, 11574202, 11504230), and the Funds of Shanghai Committee of Science and Technology, China (Grant Nos. 15JC1402300, 14PJ1404600).
    [1]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu Phillip M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262

    [2]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [3]

    Ge J F, Liu Z L, Liu C H, Gao C L, Qian D, Xue Q K, Liu Y, Jia J F 2015 Nat. Mater. 14 285

    [4]

    Miyata Y, Nakayama K, Sugawara K, Sato T, Takahashi T 2015 Nat. Mater. 14 775

    [5]

    Wang L L, Ma X C, Chen X, Xue Q K 2013 Chin. Phys. B 22 086801

    [6]

    Imai Y, Sawada Y, Nabeshima F, Maedaet A 2015 Proc. Natl. Acad. Sci. USA 112 1937

    [7]

    Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi1 S, Casper1 F, Ksenofontov V, Wortmann G, Felseret C 2009 Nat. Mater. 8 630

    [8]

    Margadonna S, Takabayashi Y, Ohishi Y, Mizuguchi Y, Takano Y, Kagayama T, Nakagawa T, Takata M, Prassides K 2009 Phys. Rev. B 80 064206

    [9]

    Jung S G, Lee N H, Choi E M, Kang W N, Lee S I, Hwang T J, Kim D H 2010 Physica C 470 1977

    [10]

    Chen L, Tsai C F, Zhu Y Y, Bi Z X, Wang H Y 2011 Physica C 471 515

    [11]

    Li Z, Peng J P, Zhang H M, Zhang W H, Ding H, Deng P, Chang K, Song C L, Ji S H, Wang L L, He K, Chen X, Xue Q K, Ma X C 2014 J. Phys: Condens. Mat. 26 265002

    [12]

    Wang M, Ou Y B, Li F S, Zhang W H, Tang C J, Wang L L, Xue Q K, Ma X C 2014 Acta Phys. Sin. 63 027401 (in Chinese) [王萌, 欧云波, 李坊森, 张文号, 汤辰佳, 王立莉, 薛其坤, 马旭村 2014 物理学报 63 027401]

    [13]

    Hanzawa K, Sato H, Hiramatsu H, Kamiya T, Hosono H 2015 arXiv: 1508 07689

    [14]

    Resh J, Jamison K D, Strozier J, Bensaoula A, Ignatiev A 1989 Phys. Rev. B 40 11799

    [15]

    Nemcsics 2002 Thin Solid Films 412 60

    [16]

    Zhang J, Neave J H, Dobson P J, Joyce B A 1987 Appl. Phys. A 42 317

    [17]

    Tan S, Zhang Y, Xia M, Ye Z R, Chen F, Xie X, Peng R, Xu D F, Fan Q, Xu H C, Jiang J, Zhang T, Lai X H, Xiang T, Hu J P, Xie B P, Feng D L 2013 Nat. Mater. 12 634

    [18]

    Huang D, Song C L, Webb T A, Fang S A, Chang C Z, Moodera J S, Kaxiras E, Hoffman J E 2015 Phys. Rev. Lett. 115 017002

    [19]

    Neave J H, Joyce B A, Dobson P J, Norton N 1983 Appl. Phys. A 31 1

    [20]

    Blger B, Larsen P K 1986 Rev. Sci. Instrum. 57 1363

    [21]

    Chen K M, Zhou T C, Fan Y L, Sheng C, Yu M R 1990 Acta Phys. Sin. 39 1937 (in Chinese) [陈可明, 周铁城, 樊永良, 盛篪, 俞鸣人 1990 物理学报 39 1937]

    [22]

    Wang Z L 1993 Rep. Prog. Phys. 56 997

    [23]

    Shin B, Leonard J P, McCamy J W, Aziz Michael J 2007 J. Vac. Sci. Technol. A 25 221

    [24]

    Okamoto H 1991 J. Phase. Equilib. Diff. 12 383

    [25]

    Ohring M 2001 Materials Science of Thin Films 7.6.1 (San Diego: Academic press) pp340-345

    [26]

    Clarke S, Vvedensky D D 1988 J. Appl. Phys. 63 2272

    [27]

    Braun W, Trampert A, Dweritz L, Ploog K H 1997 Phys. Rev. B 55 1689

    [28]

    Sudijono J, Johnson M D, Snyder C W, Elowitz M B, Orr B G 1992 Phys. Rev. Lett. 69 2811

    [29]

    Korte U, Maksym P A 1997 Phys. Rev. Lett. 78 2381

    [30]

    Zhang W, Li Z, Li F, Zhang H M, Peng J P, Tang C J, Wang Q Y, He K, Chen X, Wang L L, Ma X C, Xue Q K 2014 Phys. Rev. B 89 060506

  • [1]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu Phillip M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262

    [2]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [3]

    Ge J F, Liu Z L, Liu C H, Gao C L, Qian D, Xue Q K, Liu Y, Jia J F 2015 Nat. Mater. 14 285

    [4]

    Miyata Y, Nakayama K, Sugawara K, Sato T, Takahashi T 2015 Nat. Mater. 14 775

    [5]

    Wang L L, Ma X C, Chen X, Xue Q K 2013 Chin. Phys. B 22 086801

    [6]

    Imai Y, Sawada Y, Nabeshima F, Maedaet A 2015 Proc. Natl. Acad. Sci. USA 112 1937

    [7]

    Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi1 S, Casper1 F, Ksenofontov V, Wortmann G, Felseret C 2009 Nat. Mater. 8 630

    [8]

    Margadonna S, Takabayashi Y, Ohishi Y, Mizuguchi Y, Takano Y, Kagayama T, Nakagawa T, Takata M, Prassides K 2009 Phys. Rev. B 80 064206

    [9]

    Jung S G, Lee N H, Choi E M, Kang W N, Lee S I, Hwang T J, Kim D H 2010 Physica C 470 1977

    [10]

    Chen L, Tsai C F, Zhu Y Y, Bi Z X, Wang H Y 2011 Physica C 471 515

    [11]

    Li Z, Peng J P, Zhang H M, Zhang W H, Ding H, Deng P, Chang K, Song C L, Ji S H, Wang L L, He K, Chen X, Xue Q K, Ma X C 2014 J. Phys: Condens. Mat. 26 265002

    [12]

    Wang M, Ou Y B, Li F S, Zhang W H, Tang C J, Wang L L, Xue Q K, Ma X C 2014 Acta Phys. Sin. 63 027401 (in Chinese) [王萌, 欧云波, 李坊森, 张文号, 汤辰佳, 王立莉, 薛其坤, 马旭村 2014 物理学报 63 027401]

    [13]

    Hanzawa K, Sato H, Hiramatsu H, Kamiya T, Hosono H 2015 arXiv: 1508 07689

    [14]

    Resh J, Jamison K D, Strozier J, Bensaoula A, Ignatiev A 1989 Phys. Rev. B 40 11799

    [15]

    Nemcsics 2002 Thin Solid Films 412 60

    [16]

    Zhang J, Neave J H, Dobson P J, Joyce B A 1987 Appl. Phys. A 42 317

    [17]

    Tan S, Zhang Y, Xia M, Ye Z R, Chen F, Xie X, Peng R, Xu D F, Fan Q, Xu H C, Jiang J, Zhang T, Lai X H, Xiang T, Hu J P, Xie B P, Feng D L 2013 Nat. Mater. 12 634

    [18]

    Huang D, Song C L, Webb T A, Fang S A, Chang C Z, Moodera J S, Kaxiras E, Hoffman J E 2015 Phys. Rev. Lett. 115 017002

    [19]

    Neave J H, Joyce B A, Dobson P J, Norton N 1983 Appl. Phys. A 31 1

    [20]

    Blger B, Larsen P K 1986 Rev. Sci. Instrum. 57 1363

    [21]

    Chen K M, Zhou T C, Fan Y L, Sheng C, Yu M R 1990 Acta Phys. Sin. 39 1937 (in Chinese) [陈可明, 周铁城, 樊永良, 盛篪, 俞鸣人 1990 物理学报 39 1937]

    [22]

    Wang Z L 1993 Rep. Prog. Phys. 56 997

    [23]

    Shin B, Leonard J P, McCamy J W, Aziz Michael J 2007 J. Vac. Sci. Technol. A 25 221

    [24]

    Okamoto H 1991 J. Phase. Equilib. Diff. 12 383

    [25]

    Ohring M 2001 Materials Science of Thin Films 7.6.1 (San Diego: Academic press) pp340-345

    [26]

    Clarke S, Vvedensky D D 1988 J. Appl. Phys. 63 2272

    [27]

    Braun W, Trampert A, Dweritz L, Ploog K H 1997 Phys. Rev. B 55 1689

    [28]

    Sudijono J, Johnson M D, Snyder C W, Elowitz M B, Orr B G 1992 Phys. Rev. Lett. 69 2811

    [29]

    Korte U, Maksym P A 1997 Phys. Rev. Lett. 78 2381

    [30]

    Zhang W, Li Z, Li F, Zhang H M, Peng J P, Tang C J, Wang Q Y, He K, Chen X, Wang L L, Ma X C, Xue Q K 2014 Phys. Rev. B 89 060506

  • [1] You Ming-Hui, Li Xue, Li Shi-Jun, Liu Guo-Jun. Growth of lattice matched InAs/AlSb superlattices by molecular beam epitaxy. Acta Physica Sinica, 2023, 72(1): 014203. doi: 10.7498/aps.72.20221383
    [2] Li Pei-Gen, Zhang Ji-Hai, Tao Ye, Zhong Ding-Yong. Two-dimensional magnetic transition metal halides: molecular beam epitaxy growth and physical property modulation. Acta Physica Sinica, 2022, 71(12): 127505. doi: 10.7498/aps.71.20220727
    [3] Wang Xing-Yue, Zhang Hui, Ruan Zi-Lin, Hao Zhen-Liang, Yang Xiao-Tian, Cai Jin-Ming, Lu Jian-Chen. Research progress of monolayer two-dimensional atomic crystal materials grown by molecular beam epitaxy in ultra-high vacuum conditions. Acta Physica Sinica, 2020, 69(11): 118101. doi: 10.7498/aps.69.20200174
    [4] Xiao Jia-Xing, Lu Jun, Zhu Li-Jun, Zhao Jian-Hua. Perpendicular magnetic properties of ultrathin L10-Mn1.67Ga films grown by molecular-beam epitaxy. Acta Physica Sinica, 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [5] Yang Wen-Xian, Ji Lian, Dai Pan, Tan Ming, Wu Yuan-Yuan, Lu Jian-Ya, Li Bao-Ji, Gu Jun, Lu Shu-Long, Ma Zhong-Quan. Study on photoluminescence properties of 1.05 eV InGaAsP layers grown by molecular beam epitaxy. Acta Physica Sinica, 2015, 64(17): 177802. doi: 10.7498/aps.64.177802
    [6] Zhu Meng-Yao, Lu Jun, Ma Jia-Lin, Li Li-Xia, Wang Hai-Long, Pan Dong, Zhao Jian-Hua. Molecular-beam epitaxy of high-quality diluted magnetic semiconductor (Ga, Mn)Sb single-crystalline films. Acta Physica Sinica, 2015, 64(7): 077501. doi: 10.7498/aps.64.077501
    [7] Wu Jian-Bang, Zhou Min-Jie, Wang Xue-Min, Wang Yu-Ying, Xiong Zheng-Wei, Cheng Xin-Lu, Marie-José Casanove, Christophe Gatel, Wu Wei-Dong. Epitaxial growth micro-structure and magnetic studies of FePt nanoparticles:MgO multi-layer composite thin films. Acta Physica Sinica, 2014, 63(16): 166801. doi: 10.7498/aps.63.166801
    [8] Wang Meng, Ou Yun-Bo, Li Fang-Sen, Zhang Wen-Hao, Tang Chen-Jia, Wang Li-Li, Xue Qi-Kun, Ma Xu-Cun. Molecular beam epitaxy of single unit-cell FeSe superconducting films on SrTiO3(001). Acta Physica Sinica, 2014, 63(2): 027401. doi: 10.7498/aps.63.027401
    [9] Su Shao-Jian, Zhang Dong-Liang, Zhang Guang-Ze, Xue Chun-Lai, Cheng Bu-Wen, Wang Qi-Ming. High-quality Ge1-xSnx alloys grown on Ge(001) substrates by molecular beam epitaxy. Acta Physica Sinica, 2013, 62(5): 058101. doi: 10.7498/aps.62.058101
    [10] Nie Shuai-Hua, Zhu Li-Jun, Pan Dong, Lu Jun, Zhao Jian-Hua. Structural characterization and magnetic properties of perpendicularly magnetized MnAl films grown by molecular-beam epitaxy. Acta Physica Sinica, 2013, 62(17): 178103. doi: 10.7498/aps.62.178103
    [11] Hu Yi-Bin, Hao Zhi-Biao, Hu Jian-Nan, Niu Lang, Wang Lai, Luo Yi. Studies on the composition of InGaN/AlN quantum dots grown by molecular beam epitaxy. Acta Physica Sinica, 2012, 61(23): 237804. doi: 10.7498/aps.61.237804
    [12] Su Shao-Jian, Wang Wei, Zhang Guang-Ze, Hu Wei-Xuan, Bai An-Qi, Xue Chun-Lai, Zuo Yu-Hua, Cheng Bu-Wen, Wang Qi-Ming. Epitaxial growth of Ge0.975Sn0.025alloy films on Si(001) substrates by molecular beam epitaxy. Acta Physica Sinica, 2011, 60(2): 028101. doi: 10.7498/aps.60.028101
    [13] Ding Zhao, Wei Jun, Yang Zai-Rong, Luo Zi-Jiang, He Ye-Quan, Zhou Xun, He Hao, Deng Chao-Yong. Study on temperature calibration and surface phase transition of GaAs crystal substrate in MBE growth by RHEED real-time monitoring. Acta Physica Sinica, 2011, 60(1): 016109. doi: 10.7498/aps.60.016109
    [14] Zhao Ming-Hai, Sun Jing-Jing, Wang Dan, Zou Zhi-Qiang, Liang Qi. STM studies of the epitaxial growth of C60 molecules on Si(111)-7×7 surface. Acta Physica Sinica, 2010, 59(1): 636-642. doi: 10.7498/aps.59.636
    [15] Zhang Yan-Hui, Chen Ping-Ping, Li Tian-Xin, Yin Hao. InNSb single crystal films prepared on GaAs (001) substrates by molecular beam epitaxy. Acta Physica Sinica, 2010, 59(11): 8026-8030. doi: 10.7498/aps.59.8026
    [16] Li Tian-Fu, Chen Dong-Feng, Wang Hong-Li, Sun Kai, Liu Yun-Tao. Magnetic properties of ultrathin (4?)Fe film studied by polarized neutron reflectometry. Acta Physica Sinica, 2009, 58(11): 7993-7997. doi: 10.7498/aps.58.7993
    [17] Zhang Chong, Ye Hui, Zhang Lei, Huang-Fu You-Rui, Liu Xu. A study of RHEED pattern from the epitaxial growth of Si-Ge crystal. Acta Physica Sinica, 2009, 58(11): 7765-7772. doi: 10.7498/aps.58.7765
    [18] Xu Xiao-Hua, Niu Zhi-Chuan, Ni Hai-Qiao, Xu Ying-Qiang, Zhang Wei, He Zheng-Hong, Han Qin, Wu Rong-Han, Jiang De-Sheng. Photoluminescence study of (GaAs1-xSbx/InyGa1-yAs)/GaAs bilayer quantum well grown by molecular beam epitaxy. Acta Physica Sinica, 2005, 54(6): 2950-2954. doi: 10.7498/aps.54.2950
    [19] Wang Chong, Chen Ping-Ping, Zhou Xu-Chang, Xia Chang-Sheng, Wang Shao-Wei, Chen Xiao-Shuang, Lu Wei. Piezomodulated-reflectivity study of GaAs/Al0.29Ga0.71As single quantum well. Acta Physica Sinica, 2005, 54(7): 3337-3341. doi: 10.7498/aps.54.3337
    [20] JING CHAO, JIN XIAO-FENG, DONG GUO-SHENG, GONG XIAO-YAN, YU LI-MING, ZHENG WEI-MIN. EXCHANGE BIASING IN MOLECULAR-BEAM-EPITAXY-GROWN Fe/Fe50Mn50 BILAYERS. Acta Physica Sinica, 2000, 49(10): 2022-2026. doi: 10.7498/aps.49.2022
Metrics
  • Abstract views:  5904
  • PDF Downloads:  451
  • Cited By: 0
Publishing process
  • Received Date:  22 March 2016
  • Accepted Date:  06 April 2016
  • Published Online:  05 June 2016

/

返回文章
返回