Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fluorescence whispering gallery modes in Tm3+-doped Ge-Ga-S chalcogenide glasses microsphere-silica fiber taper coupling system

Zhang Xing-Di Wu Yue-Hao Yang Zheng-Sheng Dai Shi-Xun Zhang Pei-Qing Zhang Wei Xu Tie-Feng Zhang Qin-Yuan

Citation:

Fluorescence whispering gallery modes in Tm3+-doped Ge-Ga-S chalcogenide glasses microsphere-silica fiber taper coupling system

Zhang Xing-Di, Wu Yue-Hao, Yang Zheng-Sheng, Dai Shi-Xun, Zhang Pei-Qing, Zhang Wei, Xu Tie-Feng, Zhang Qin-Yuan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Microsphere resonators based on chalcogenide glasses combine the superior optical properties of microsphere resonators (such as high Q-factors and small mode volumes) and excellent material properties of chalcogenide glasses in the infrared spectrum (such as good transmissivities, high refractive indices, and low phonon energies), and thus have promising applications in the fields of low-threshold infrared lasers, nonlinear Raman amplifiers/lasers, and narrow bandwidth infrared filters.In this work, the infrared microsphere resonators are built by using a novel chalcogenide glass composition of 75 GeS2-15 Ga2S3-10 CsI (Ge-Ga-S), doped with 1.3 wt% Tm. Compared with previously reported chalcogenide microsphere resonators fabricated with As2S3 and gallium lanthanum sulfide (Ga-La-S) glasses, the proposed Ge-Ga-S glass does not contain the toxic element of As nor the expensive rare earth element of La, and thus is more environmentally friendly and cost-effective for fabricators and users. We first fabricate bulk Ge-Ga-S glasses by using the facility in our laboratory. After measuring the absorption and fluorescence spectra of bulk glasses, they are crushed into powders and the powders are blown downwards through an inert-gas-filled vertical furnace (temperature set at 1000 ℃). Molten glass powders are transformed into high-quality microspheres in the furnace due to surface tension. Thousands of microspheres with diameters ranging from 50 to 200 m can be made in one fabrication process. By using optical microscopy and scanning electron microscopy, a microsphere with high surface quality is selected for further optical characterization. The selected microsphere has a diameter of 72.84 m, an eccentricity less than 1% (about 80 nm), and a Q-factor of 1.296104. A silica fiber taper with a waist-diameter of 1.93 m is fabricated as the coupling mechanism for the microsphere resonator. The coupling between the microsphere and the micro fiber taper is realized with the aid of nano-positioning stages. An 808 nm laser diode is used as a pump light source, which is sent into one end of the fiber taper and is evanescently coupled into the microsphere. Spontaneous emissions of fluorescent light are then generated in the microsphere, whose spectral characteristics are measured by using an optical spectrum analyzer. It can be clearly noted from the measurement results that the typical fluorescence spectrum of the Tm3+-doped Ge-Ga-S glass is modified by whispering gallery mode (WGM) patterns as periodic intensity peaks/valleys are apparently present in the measured spectral curves. The locations of those experimentally measured spectral peaks/valleys are in good agreement with WGM mode calculated results through using the Mie scattering theory, which verifies that the proposed Ge-Ga-S glass can be used to build high-quality infrared microsphere resonators. The largest deviation between the experimentally measured spectral peaks/valleys and theoretically calculated WGM modes is about 0.047%. Minor deviation is present because the experimentally fabricated microsphere has a small difference from an ideal sphere (with an eccentricity of about 1% in this work). Longer processing time of glass powders in the vertical furnace or a post-thermal treatment could help improve the sphericity of microspheres.
      Corresponding author: Wu Yue-Hao, wuyuehao@nbu.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 61435009), the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ15F050002), the Open Fund of The State Key Laboratory of Luminescent Materials and Devices, China (Grant No. 2014-skllmd-01), the Natural Science Foundation of Ningbo, China (Grant Nos. 2014A610125, 2015A610122), and the Open Fund of Priority Discipline of Zhejiang Province, China (Grant No. XKL141039).
    [1]

    Chao C Y, Guo L J 2006 J. Lightwave Technology 24 1395

    [2]

    Kippenberg T J, Spillane S M, Vahala K J 2004 Phys. Rev. Lett. 93 8193

    [3]

    Ilchenko V S, Yao X S, Maleki L 1999 Opt. Lett. 24 723

    [4]

    Cai M, Painter O, Vahala K J 2000 Phys. Rev. Lett. 85 74

    [5]

    Lv H, Liu A M, Wu Y, Tong J F, Yi X N, Li Q G 2009 Opt. Technique 35 712 (in Chinese) [吕昊, 刘爱梅, 吴芸, 童菊芳, 易煦农, 李钱光 2009 光学技术 35 712]

    [6]

    Peng X, Song F, Jiang S, Peyghambarian N, Kuwata-Gonokami M, Xu L 2003 Appl. Phys. Lett. 82 1497

    [7]

    Fujiwara H, Sasaki K 1999 J. Appl. Phys. 86 2385

    [8]

    Wang P, Ding M, Lee T, Murugan G S, Bo L, Semenova Y, Wu Q, Hewak D, Brambilla G, Farrell G 2013 Appl. Phys. Lett. 102 131110

    [9]

    Vanier F, Rochette M, Godbout N, Peter Y A 2013 Opt. Lett. 38 4966

    [10]

    Elliott G R, Hewak D W, Murugan G S, Wilkinson J S 2007 Opt. Express 15 17542

    [11]

    Zakery A, Elliott S R 2003 J. Non-Cryst. Solids. 330 1

    [12]

    Seddon A B 1995 J. Non-Cryst. Solids. 184 44

    [13]

    Elliott G R 2009 Ph. D. Dissertation (Southampton: University of Southampton)

    [14]

    Li C R, Dai S X, Zhang Q Y, Shen X, Wang X S, Zhang P Q, Lu L W, Wu Y H, Lv S Q 2015 Chin. Phys. B 24 237

    [15]

    Lv S Q, Wu Y H, Lu L W, Li C R, Zhang P Q, Zhang W, Dai S X 2014 J. Lumin. 35 454 (in Chinese) [吕社钦, 吴越豪, 路来伟, 李超然, 张培晴, 张巍, 戴世勋 2014 发光学报 35 454]

    [16]

    Dai S X, Lu L W, Tao G M, Xu Y S, Yin D M, Niu X K, Zhang W 2012 Laser Optoelectronics Progress 49 080001 (in Chinese) [戴世勋, 路来伟, 陶光明, 许银生, 尹冬梅, 牛雪珂, 张巍 2012 激光与光电子学进展 49 080001]

    [17]

    Lu L W, Wu Y H, Li C R, L S Q, Zhang P Q, Dai S X, Xu Y S, Shen X 2014 Acta Photonica Sinica 43 730002 (in Chinese) [路来伟, 吴越豪, 李超然, 吕社钦, 张培晴,戴世勋, 许银生, 沈祥 2014 光子学报 43 730002]

    [18]

    Lam C C, Leung P T, Young K 1992 J. Opt. Soc. Am. B 9 1585

    [19]

    Grillet C, Bian S N, Magi E, Eggleton B J 2008 Appl. Phys. Lett. 92 1109

  • [1]

    Chao C Y, Guo L J 2006 J. Lightwave Technology 24 1395

    [2]

    Kippenberg T J, Spillane S M, Vahala K J 2004 Phys. Rev. Lett. 93 8193

    [3]

    Ilchenko V S, Yao X S, Maleki L 1999 Opt. Lett. 24 723

    [4]

    Cai M, Painter O, Vahala K J 2000 Phys. Rev. Lett. 85 74

    [5]

    Lv H, Liu A M, Wu Y, Tong J F, Yi X N, Li Q G 2009 Opt. Technique 35 712 (in Chinese) [吕昊, 刘爱梅, 吴芸, 童菊芳, 易煦农, 李钱光 2009 光学技术 35 712]

    [6]

    Peng X, Song F, Jiang S, Peyghambarian N, Kuwata-Gonokami M, Xu L 2003 Appl. Phys. Lett. 82 1497

    [7]

    Fujiwara H, Sasaki K 1999 J. Appl. Phys. 86 2385

    [8]

    Wang P, Ding M, Lee T, Murugan G S, Bo L, Semenova Y, Wu Q, Hewak D, Brambilla G, Farrell G 2013 Appl. Phys. Lett. 102 131110

    [9]

    Vanier F, Rochette M, Godbout N, Peter Y A 2013 Opt. Lett. 38 4966

    [10]

    Elliott G R, Hewak D W, Murugan G S, Wilkinson J S 2007 Opt. Express 15 17542

    [11]

    Zakery A, Elliott S R 2003 J. Non-Cryst. Solids. 330 1

    [12]

    Seddon A B 1995 J. Non-Cryst. Solids. 184 44

    [13]

    Elliott G R 2009 Ph. D. Dissertation (Southampton: University of Southampton)

    [14]

    Li C R, Dai S X, Zhang Q Y, Shen X, Wang X S, Zhang P Q, Lu L W, Wu Y H, Lv S Q 2015 Chin. Phys. B 24 237

    [15]

    Lv S Q, Wu Y H, Lu L W, Li C R, Zhang P Q, Zhang W, Dai S X 2014 J. Lumin. 35 454 (in Chinese) [吕社钦, 吴越豪, 路来伟, 李超然, 张培晴, 张巍, 戴世勋 2014 发光学报 35 454]

    [16]

    Dai S X, Lu L W, Tao G M, Xu Y S, Yin D M, Niu X K, Zhang W 2012 Laser Optoelectronics Progress 49 080001 (in Chinese) [戴世勋, 路来伟, 陶光明, 许银生, 尹冬梅, 牛雪珂, 张巍 2012 激光与光电子学进展 49 080001]

    [17]

    Lu L W, Wu Y H, Li C R, L S Q, Zhang P Q, Dai S X, Xu Y S, Shen X 2014 Acta Photonica Sinica 43 730002 (in Chinese) [路来伟, 吴越豪, 李超然, 吕社钦, 张培晴,戴世勋, 许银生, 沈祥 2014 光子学报 43 730002]

    [18]

    Lam C C, Leung P T, Young K 1992 J. Opt. Soc. Am. B 9 1585

    [19]

    Grillet C, Bian S N, Magi E, Eggleton B J 2008 Appl. Phys. Lett. 92 1109

  • [1] Lü Yu-Xi, Wang Chen, Duan Tian-Qi, Zhao Tong, Chang Peng-Fa, Wang An-Bang. Asymmetric transmission of cascaded acousto-optic device and whispering gallery mode microcavity. Acta Physica Sinica, 2024, 73(1): 014101. doi: 10.7498/aps.73.20230653
    [2] Fan Si-Chen, Yang Fan, Ruan Jun. Eelectromagnetic field distribution of whispering gallery mode in a sapphire resonator. Acta Physica Sinica, 2022, 71(23): 234101. doi: 10.7498/aps.71.20221156
    [3] Yu Chang-Qiu, Ma Shi-Chang, Chen Zhi-Yuan, Xiang Chen-Chen, Li Hai, Zhou Tie-Jun. Magnetic field sensing performance of centimeter-scale resonator with optimized structure. Acta Physica Sinica, 2021, 70(16): 160701. doi: 10.7498/aps.70.20210247
    [4] Meng Ling-Jun, Wang Meng-Yu, Shen Yuan, Yang Yu, Xu Wen-Bin, Zhang Lei, Wang Ke-Yi. Triple-layer-coated microspheres for refractive index sensor with internally referenced self-compensated thermal effect. Acta Physica Sinica, 2020, 69(1): 014203. doi: 10.7498/aps.69.20191265
    [5] Wang Meng-Yu, Meng Ling-Jun, Yang Yu, Zhong Hui-Kai, Wu Tao, Liu Bin, Zhang Lei, Fu Yan-Jun, Wang Ke-Yi. Selection of whispering-gallery modes and Fano resonance of prolate microbottle resonators. Acta Physica Sinica, 2020, 69(23): 234203. doi: 10.7498/aps.69.20200817
    [6] Hou Zhi-Shan, Xu Shuai, Luo Yang, Li Ai-Wu, Yang Han. Femtosecond laser 3D printing temperature sensitive microsphere lasers. Acta Physica Sinica, 2019, 68(19): 194204. doi: 10.7498/aps.68.20190298
    [7] Lü Yue-Lan, Yin Xiang-Bao, Sun Wei-Min, Liu Yong-Jun, Yuan Li-Bo. Laser emission characteristics of the capillary of dye-doped liquid crystal. Acta Physica Sinica, 2018, 67(4): 044204. doi: 10.7498/aps.67.20171844
    [8] Lu He-Lin, Du Chun-Guang. Coherent control of whispering-gallery-mode optomechanical microresonators and perfect transparency. Acta Physica Sinica, 2016, 65(21): 214204. doi: 10.7498/aps.65.214204
    [9] Chen Hua-Jun, Fang Xian-Wen, Chen Chang-Zhao, Li Yang. Coherent optical propagation properties and ultrahigh resolution mass sensing based on double whispering gallery modes cavity optomechanics. Acta Physica Sinica, 2016, 65(19): 194205. doi: 10.7498/aps.65.194205
    [10] Wang Tao, Yang Xu, Liu Xiao-Fei, Lei Fu-Chuan, Gao Ming, Hu Yun-Qi, Long Gui-Lu. Nano-partical sensing based on Raman laser in the whispering gallery mode microresonators. Acta Physica Sinica, 2015, 64(16): 164212. doi: 10.7498/aps.64.164212
    [11] Qiu Kang-Sheng, Zhao Yan-Hui, Liu Xiang-Bo, Feng Bao-Hua, Xu Xiu-Lai. Whispering gallery modes in a bent ZnO microwire. Acta Physica Sinica, 2014, 63(17): 177802. doi: 10.7498/aps.63.177802
    [12] Shu Fang-Jie. Analysis of features of the microdisk cavity perpendicular coupler. Acta Physica Sinica, 2013, 62(6): 064212. doi: 10.7498/aps.62.064212
    [13] Zhu Kun, Zhou Li, You Hong-Hai, Jiang Nan, Pu Xiao-Yun. The study on the produced length of whispering-gallery-mode fiber laser. Acta Physica Sinica, 2011, 60(5): 054205. doi: 10.7498/aps.60.054205
    [14] Zhang Yuan-Xian, Feng Yong-Li, Zhou Li, Pu Xiao-Yun. Radiation properties of a whispering-gallery-mode fibre laser based on skew light pumping. Acta Physica Sinica, 2010, 59(3): 1802-1808. doi: 10.7498/aps.59.1802
    [15] Qiu Shan-Liang, Li Yong-Ping. Self-consistent field description of whispering-gallery mode in circular cavity. Acta Physica Sinica, 2009, 58(12): 8309-8315. doi: 10.7498/aps.58.8309
    [16] Zhang Yuan-Xian, Pu Xiao-Yun, Zhu Kun, Han De-Yu, Jiang Nan. Threshold characteristics of evanescent-wave pumped whispering-gallery-mode fiber laser. Acta Physica Sinica, 2009, 58(5): 3179-3184. doi: 10.7498/aps.58.3179
    [17] Pu Xiao-Yun, Bai Ran, Xiang Wen-Li, Du Fei, Jiang Nan. Two-wavelength-range whispering-gallery-mode fiber laser pumped by evanescent wave. Acta Physica Sinica, 2009, 58(6): 3923-3928. doi: 10.7498/aps.58.3923
    [18] Liu Chong, Ge Jian-Hong, Xiang Zhen, Chen Jun. Influence of spherical aberration of the thermal lens on the mode profile of a large-volume TEM00-mode resonator. Acta Physica Sinica, 2008, 57(3): 1704-1708. doi: 10.7498/aps.57.1704
    [19] Yang Rui, Yu Wen-Hua, Bao Yang, Zhang Yuan-Xian, Pu Xiao-Yun. Whispering-gallery modes based on evanescent field in cylindrical micro-cavity. Acta Physica Sinica, 2008, 57(10): 6412-6418. doi: 10.7498/aps.57.6412
    [20] Dong Yu-He, Ding Yao-Gen, Xiao Liu. Research on parameters of higher-order transverse magnetic modes in cylindrical coaxial cavity resonator. Acta Physica Sinica, 2005, 54(12): 5629-5636. doi: 10.7498/aps.54.5629
Metrics
  • Abstract views:  4602
  • PDF Downloads:  147
  • Cited By: 0
Publishing process
  • Received Date:  07 March 2016
  • Accepted Date:  16 May 2016
  • Published Online:  05 July 2016

/

返回文章
返回