Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Array gain of conventional beamformer affected by structure of acoustic field in continental slope area

Xie Lei Sun Chao Liu Xiong-Hou Jiang Guang-Yu

Citation:

Array gain of conventional beamformer affected by structure of acoustic field in continental slope area

Xie Lei, Sun Chao, Liu Xiong-Hou, Jiang Guang-Yu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Conventional beamforming (CBF) is an important processing step in underwater array signal processing. Previous researches have shown that the sound field structure as manifested by amplitude nonhomogeneity and wave-front corrugation can reduce the array gain of CBF. The acoustic environment of the continental shelf slope area is very complex. For an underwater acoustic array in this area, the amplitude and phase of the received signals will be distortional seriously. Recently, the acoustic field correlation has been the focus of research on the array gain relations with the underwater acoustic filed. However, the attenuation of acoustic field correlation is not the only factor that induces the array gain to decline, and the analyses of the array gain in the shallow water based on normal-mode model are not applicable to the continental slope area. In this paper, the array gain relations with the structure of acoustic field in continental slop area are investigated based on the theory of underwater acoustic signal propagation. The effects of acoustic field on the signal and noise gains are considered respectively. The analytic expressions of the array gain of CBF in an isotropic noise field are derived from the primal definition of array gain, which indicates that acoustic field correlation and transmission loss in continental slope are the intrinsic factors that affect the array gain of CBF. A horizontal uniform linear array (ULA) with a wide aperture receiving signals from a source in the deep water region is considered in the upslope propagation condition. The RAM program is utilized in the numerical simulations to generate the sound field of this specific environment with given parameters. The array gains, the ATLs and the horizontal longitudinal correlation coefficients of the acoustic field corresponding to three different locations are compared. Conclusions can be drawn as follows. 1) The array gain of CBF is determined by acoustic field correlation and the acoustic average transmission loss (ATL), and its maximum is less than 10lg M as the signal waveform distortion. 2) when the ATLs corresponding to hydrophones at two different receiving locations are similar, the correlation of acoustic filed is higher, and the array gain of CBF is larger. 3) When the ATLs corresponding to hydrophones at two different receiving locations are greatly different, the relation between the array gain of CBF and the acoustic filed correlation is no longer positive. The simulation results verify the array gain of CBF relations with the acoustic filed correlation and the transmission loss in the continental slope area.
      Corresponding author: Sun Chao, csun@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11534009).
    [1]

    Urick R J 1983 Principles of Underwater Sound (Westport: Peninsula Publishing) p33

    [2]

    van Trees H L 2002 Optimum Array Processing: Detection, Estimation, and Modulation Theory (New York: John Wiley and Sons Inc) p63

    [3]

    Bourret R C 1961 J. Acoust. Soc. Am 33 1793

    [4]

    Berman H G, Berman A 1962 J. Acoust. Soc. Am 34 555

    [5]

    Brown J L 1962 J. Acoust. Soc. Am 34 1927

    [6]

    Kleinberg L I 1980 J. Acoust. Soc. Am. 67 572

    [7]

    Cox H 1973 J. Acoust. Soc. Am. 54 1743

    [8]

    Green M C 1976 J. Acoust. Soc. Am. 60 129

    [9]

    Buckingham M J 1979 J. Acoust. Soc. Am. 65 148

    [10]

    Jensen F B, Kuperman W A, Portor M B, Schmidt H 2000 Computational Ocean Acoustics (New York: AIP Press/Springer) p258

    [11]

    Hamson R M 1980 J. Acoust. Soc. Am. 68 156

    [12]

    Neubert J A 1981 J. Acoust. Soc. Am. 70 1098

    [13]

    Liu Q Y, Song J Zhao C M 2010 Acoustics and Electronics 2 8 (in Chinese) [刘清宇, 宋俊, 赵春梅 2010 声学与电子工程 2 8]

    [14]

    Song J 2005 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [宋俊 2005 博士学位论文(长沙: 国防科技大学)]

    [15]

    Carey W M 1998 J. Acoust. Soc. Am. 104 831

    [16]

    Yu H 1991 Ship Science and Technology 6 1 (in Chinese) [于瀚 1991 舰船科学技术 6 1]

    [17]

    Collins M D 1993 J. Acoust. Soc. Am. 93 1736

    [18]

    Wang J, Ma R L, Wang L, Meng J M 2012 Acta Phys. Sin. 61 064701 (in Chinese) [王晶, 马瑞玲, 王龙, 孟俊敏 2012 物理学报 61 064701]

    [19]

    Yang C M, Luo W Y, Zhang R H, Qin J X 2013 Acta Phys. Sin. 62 094302 (in Chinese) [杨春梅, 骆文于, 张仁和, 秦继兴 2013 物理学报 62 094302]

    [20]

    Jensen F B, Kuperman W A 1980 J. Acoust. Soc. Am. 67 1564

    [21]

    Pierce A D 1982 J. Acoust. Soc. Am. 72 523

    [22]

    Dosso S E, Chapman N R 1987 J. Acoust. Soc. Am. 81 258

    [23]

    Wang L J 2011 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [王鲁军2011 博士学位论文(北京: 中国科学院大学)]

    [24]

    Cron B F, Sherman C H 1962 J. Acoust. Soc. Am. 34 1732

    [25]

    Hu Z G, Li Z L, Zhang R H, Ren Y, Qin J X, He L 2016 Acta Phys. Sin. 65 014303 (in Chinese) [胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利 2016 物理学报 65 014303]

    [26]

    Su X X, Zhang R H, Li F H 2006 Acta Acustica 4 305 (in Chinese) [苏晓星, 张仁和, 李风华 2006 声学学报 4 305]

  • [1]

    Urick R J 1983 Principles of Underwater Sound (Westport: Peninsula Publishing) p33

    [2]

    van Trees H L 2002 Optimum Array Processing: Detection, Estimation, and Modulation Theory (New York: John Wiley and Sons Inc) p63

    [3]

    Bourret R C 1961 J. Acoust. Soc. Am 33 1793

    [4]

    Berman H G, Berman A 1962 J. Acoust. Soc. Am 34 555

    [5]

    Brown J L 1962 J. Acoust. Soc. Am 34 1927

    [6]

    Kleinberg L I 1980 J. Acoust. Soc. Am. 67 572

    [7]

    Cox H 1973 J. Acoust. Soc. Am. 54 1743

    [8]

    Green M C 1976 J. Acoust. Soc. Am. 60 129

    [9]

    Buckingham M J 1979 J. Acoust. Soc. Am. 65 148

    [10]

    Jensen F B, Kuperman W A, Portor M B, Schmidt H 2000 Computational Ocean Acoustics (New York: AIP Press/Springer) p258

    [11]

    Hamson R M 1980 J. Acoust. Soc. Am. 68 156

    [12]

    Neubert J A 1981 J. Acoust. Soc. Am. 70 1098

    [13]

    Liu Q Y, Song J Zhao C M 2010 Acoustics and Electronics 2 8 (in Chinese) [刘清宇, 宋俊, 赵春梅 2010 声学与电子工程 2 8]

    [14]

    Song J 2005 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [宋俊 2005 博士学位论文(长沙: 国防科技大学)]

    [15]

    Carey W M 1998 J. Acoust. Soc. Am. 104 831

    [16]

    Yu H 1991 Ship Science and Technology 6 1 (in Chinese) [于瀚 1991 舰船科学技术 6 1]

    [17]

    Collins M D 1993 J. Acoust. Soc. Am. 93 1736

    [18]

    Wang J, Ma R L, Wang L, Meng J M 2012 Acta Phys. Sin. 61 064701 (in Chinese) [王晶, 马瑞玲, 王龙, 孟俊敏 2012 物理学报 61 064701]

    [19]

    Yang C M, Luo W Y, Zhang R H, Qin J X 2013 Acta Phys. Sin. 62 094302 (in Chinese) [杨春梅, 骆文于, 张仁和, 秦继兴 2013 物理学报 62 094302]

    [20]

    Jensen F B, Kuperman W A 1980 J. Acoust. Soc. Am. 67 1564

    [21]

    Pierce A D 1982 J. Acoust. Soc. Am. 72 523

    [22]

    Dosso S E, Chapman N R 1987 J. Acoust. Soc. Am. 81 258

    [23]

    Wang L J 2011 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [王鲁军2011 博士学位论文(北京: 中国科学院大学)]

    [24]

    Cron B F, Sherman C H 1962 J. Acoust. Soc. Am. 34 1732

    [25]

    Hu Z G, Li Z L, Zhang R H, Ren Y, Qin J X, He L 2016 Acta Phys. Sin. 65 014303 (in Chinese) [胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利 2016 物理学报 65 014303]

    [26]

    Su X X, Zhang R H, Li F H 2006 Acta Acustica 4 305 (in Chinese) [苏晓星, 张仁和, 李风华 2006 声学学报 4 305]

  • [1] Kang Juan, Peng Zhao-Hui, He Li, Li Sheng-Hao, Yu Xiao-Tao. Low frequency inversion method based on multi-layer holizontal variation shallow seafloor model. Acta Physica Sinica, 2024, 73(5): 054301. doi: 10.7498/aps.73.20231715
    [2] Bi Sizhao,  Peng Zhaohui,  Xie Zhimin,  Wang Guangxu,  Zhang Lingshan. Characteristics of long-range sound propagation in western Pacific. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120220566
    [3] Bi Si-Zhao, Peng Zhao-Hui, Wang Guang-Xu, Xie Zhi-Min, Zhang Ling-Shan. Characteristics of long-range sound propagation in western Pacific. Acta Physica Sinica, 2022, 71(21): 214302. doi: 10.7498/aps.71.20220566
    [4] Piao Sheng-Chun, Li Zi-Yang, Wang Xiao-Han, Zhang Ming-Hui. Lower turning point convegence zone in deep water with an incomplete channel. Acta Physica Sinica, 2021, 70(2): 024301. doi: 10.7498/aps.70.20201375
    [5] Li Meng-Zhu, Li Zheng-Lin, Zhou Ji-Xun, Zhang Ren-He. Geoacoustic inversion for acoustic parameters of sediment layer with low sound speed. Acta Physica Sinica, 2019, 68(9): 094301. doi: 10.7498/aps.68.20190183
    [6] Zhang Peng,  Li Zheng-Lin,  Wu Li-Xin,  Zhang Ren-He,  Qin Ji-Xing. Characteristics of convergence zone formed by bottom reflection in deep water. Acta Physica Sinica, 2019, 68(1): 014301. doi: 10.7498/aps.68.20181761
    [7] Xu Ming, Xu Chuan-Yun, Cao Ke-Fei. Effect of degree correlations on controllability of undirected networks. Acta Physica Sinica, 2017, 66(2): 028901. doi: 10.7498/aps.66.028901
    [8] Xie Lei, Sun Chao, Liu Xiong-Hou, Jiang Guang-Yu, Kong De-Zhi. Investigation and quantitative analysis on the acoustic energy tobogganing in the upslope waveguide of continental slope area. Acta Physica Sinica, 2017, 66(19): 194301. doi: 10.7498/aps.66.194301
    [9] Hu Zhi-Guo, Li Zheng-Lin, Zhang Ren-He, Ren Yun, Qin Ji-Xing, He Li. Sound propagation in deep water with a sloping bottom. Acta Physica Sinica, 2016, 65(1): 014303. doi: 10.7498/aps.65.014303
    [10] Zhai Lu-Sheng, Jin Ning-De. Multi-scale cross-correlation characteristics of void fraction wave propagation for gas-liquid two-phase flows in small diameter pipe. Acta Physica Sinica, 2016, 65(1): 010501. doi: 10.7498/aps.65.010501
    [11] Xia Mao-Peng, Li Jian-Jun, Gao Dong-Yang, Hu You-Bo, Sheng Wen-Yang, Pang Wei-Wei, Zheng Xiao-Bing. Absolute calibration of an analog InSb detector based on multimode spatial correlation of correlated photons. Acta Physica Sinica, 2015, 64(24): 240601. doi: 10.7498/aps.64.240601
    [12] Guo Xiao-Le, Yang Kun-De, Ma Yuan-Liang. A far distance wideband geoacoustic parameter inversion method based on a modal dispersion curve. Acta Physica Sinica, 2015, 64(17): 174302. doi: 10.7498/aps.64.174302
    [13] Zhou Jie, Wang Ya-Lin, Hisakazu Kikuchi. Approximate analysis of spatial fading correlation for multiple antenna system. Acta Physica Sinica, 2014, 63(23): 230205. doi: 10.7498/aps.63.230205
    [14] Liu Zong-Wei, Sun Chao, Du Jin-Yan. The measure of environmental sensitivity in detection performance degradation. Acta Physica Sinica, 2013, 62(6): 064303. doi: 10.7498/aps.62.064303
    [15] Wang Qi-Guang, Hou Wei, Zheng Zhi-Hai, Gao Rong. The long range correlation of East Asia’s atmosphere. Acta Physica Sinica, 2009, 58(9): 6640-6650. doi: 10.7498/aps.58.6640
    [16] Feng Guo-Lin, Gong Zhi-Qiang, Hou Wei, Wang Qi-Guang, Zhi Rong. Long-range correlation of extreme events in meterorological field. Acta Physica Sinica, 2009, 58(4): 2853-2861. doi: 10.7498/aps.58.2853
    [17] Li Xue-Gang, Yang Kun-De, Zhang Tong-Wei, Qiu Hai-Bin. An extraction method of seabed reflection loss based on towed tilted line array. Acta Physica Sinica, 2009, 58(11): 7741-7749. doi: 10.7498/aps.58.7741
    [18] Wang Qi-Guang, Zhi Rong, Zhang Zeng-Ping. The research on long range correlation of Lorenz system. Acta Physica Sinica, 2008, 57(8): 5343-5350. doi: 10.7498/aps.57.5343
    [19] Cheng Yong, Zhang Xiong, Wu Lin, Mao Wei-Ming, You Li-Sha. Analysis of the correlation between γ-ray and radio emissions from γ-ray loud Blazar using the discrete correlation function. Acta Physica Sinica, 2006, 55(2): 988-994. doi: 10.7498/aps.55.988
    [20] LI YONG-QING, WANG YU-ZHU. REDUCTION OF QUANTUM NOISE BY PHOTON CORRELATION. Acta Physica Sinica, 1989, 38(3): 476-480. doi: 10.7498/aps.38.476
Metrics
  • Abstract views:  5756
  • PDF Downloads:  375
  • Cited By: 0
Publishing process
  • Received Date:  02 March 2016
  • Accepted Date:  04 May 2016
  • Published Online:  05 July 2016

/

返回文章
返回