Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Functional tissues based on graphene oxide: facile preparation and dye adsorption properties

Cao Hai-Yan Bi Heng-Chang Xie Xiao Su Shi Sun Li-Tao

Citation:

Functional tissues based on graphene oxide: facile preparation and dye adsorption properties

Cao Hai-Yan, Bi Heng-Chang, Xie Xiao, Su Shi, Sun Li-Tao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Dye pollution, one of the most serious pollutions in water, remains a challenging issue in environmental engineering. Many strategies including membrane separation, chemical oxidation, electrolysis, adsorption, etc., have been adopted to remove the dyes from water. Compared with other methods, adsorption has its own unique advantages such as low cost, low energy consumption and high efficiency. However, commercial adsorbents have low adsorption capacities and separation of absorbents/water, which hinders their practical applications. In this paper, functional tissues based on graphene oxide are fabricated through a simple immersion method. The structure, morphology and adsorption ability for each of these functional tissues are characterized and analyzed by scanning electron microscopy, Raman spectroscopy, thermal gravity analysis and UV-Vis spectrophotometer. The combination of commercial tissue and graphene oxide can solve the aforementioned problems such as low adsorption capacity, hard separation of adsorbent from water. on the one hand, abundant oxygen-containing functional groups and defects existing in graphene oxide sheets can be used as active adsorption sites, which endows the functional tissue with high adsorption capacity; On the other hand, the crosslinking of commercial tissue and graphene oxide through hydrogen bonding enables the functional tissue to be completely recycled from water after adsorption, which can avoid the secondary pollution caused by adsorbents such as pure graphene oxide. Batch tests are conducted to investigate the adsorption performance, e.g. the influences of adsorption time, initial concentration of dyes, adsorbent amount, and temperature on the adsorption performance. The results suggest that functional tissue has excellent performance for the removal of methylene blue and rhodamine B. Giving that the initial concentrations of methylene blue and rhodamine B are 40 mgL-1 and 30 mgL-1 respectively, the adsorption capacities are 54.84 mgg-1 and 21.74 mgg-1, respectively. It is noteworthy that graphene oxide sheets play a critical role in adsorbing the dyes. The adsorption capacity of functional tissue based on graphene oxide for rhodamine B totally results from graphene oxide component. Calculating the graphene oxide loading on the tissue, the adsorption capacity for rhodamine B reaches 183 mgg-1 at initial concentration of 30 mgL-1. Meanwhile, the adsorbance quantities of the functional tissue for the two dyes increase with adsorption time, initial concentration, adsorbent dosage, and temperature. Kinetic analysis reveals that the adsorption processes for methylene blue and rhodamine B are well-matched with the pseudo-second-order kinetic model, indicating the dominance of chemical adsorption in the whole adsorption process. The thermodynamic parameters indicate that the adsorption is spontaneous and endothermic in nature. In summary, a facile, inexpensive, and eco-friendly synthesis method is developed to fabricate the functional tissues based on graphene oxide. The functional tissues have high adsorption capacities for dyes. The combination of commercial tissue and graphene oxide could be explored as a new adsorbent for removing toxic organic dye pollutants from aqueous environment.
      Corresponding author: Sun Li-Tao, slt@seu.edu.cn
    • Funds: Project supported by the National Science Fund for Distinguished Young iScholars of China (Grant No. 11525415), the International (Regional) Cooperation and Exchange Program of the National Natural Science Foundation of China (Grant No. 51420105003), the Special Found for Research on National Major Research Instrument and Facilities of the National Natural Science Foundation of China (Grant No. 11327901), and the National Natural Science Foundation of China (Grant No. 51302037).
    [1]

    Gupta V K, Mohan D, Sharma S, Sharma M 2000 Sep. Sci. Technol. 35 2097

    [2]

    Shi H C, Li W S, Zhong L, Xu C J 2014 Ind. Eng. Chem. Res. 53 1108

    [3]

    Chakraborty S, Purkait M K, Dasgupta S, De S, Basu J K 2003 Sep. Purif. Technol. 31 141

    [4]

    Yu S C, Liu M H, Ma M, Qi M, L Z H, Gao C J 2010 J. Membr. Sci. 350 83

    [5]

    Kim T H, Park C, Yang J, Kim S 2004 J. Hazard. Mater. 112 95

    [6]

    Sekaran G, Karthikeyan S, Boopathy R, Maharaja P, Gupta V K, Anandan C 2014 Environ. Sci. Pollut. Res. 21 1489

    [7]

    Parsa J B, Merati Z, Abbasi M 2013 J. Ind. Eng. Chem. 19 1350

    [8]

    Mohammed F M, Roberts E P L, Hill A, Campen A K, Brown N W 2011 Water Res. 45 3065

    [9]

    Ju D G, Byun I G, Park J J, Lee C H, Ahn G H, Park T J 2008 Bioresour. Technol. 99 7971

    [10]

    Namvari M, Namazi H 2014 Polym. Int. 63 1881

    [11]

    Huang Y H, Xu T F, Yang L Y 2013 Water Treatment Technology (1st Ed.) (Zhengzhou: The Yellow River Water Conservancy Press) pp243-254 (in Chinese) [黄跃华, 许铁夫, 杨丽英 2013 水处理技术(第一版)(郑州: 黄河水利出版社) 第243-254页]

    [12]

    Shen Z, Zhu Z Y, Zhang M C 2015 Environ. Sci. Technol. 28 68 (in Chinese) [沈众, 朱增银, 张满成 2015 环境科技 28 68]

    [13]

    Gao L, Wang Y G, Yan T, Cui L M, Hu L H, Yan L G, Wei Q, Du B 2015 New J.Chem. 39 2908

    [14]

    Shen Y, Fang Q, Chen B L 2015 Environ. Sci. Technol. 49 67

    [15]

    Bi H C, Xie X, Yin K B, Zhou Y L, Wan S, He L B, Xu F, Banhart F, Sun L T, Ruoff R S 2012 Adv. Funct. Mater. 22 4421

    [16]

    Zhou P P 2010 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese) [周盼盼 2010 博士学位论文 (兰州: 兰州大学)]

    [17]

    Peng Z 2013 M. S. Thesis (Kaifeng: Henan University) (in Chinese) [彭展2013 硕士学位论文 (开封: 河南大学)]

    [18]

    Vinothkannan M, Karthikeyan C, Kumar G G, Kim A R, Yoo D J 2015 Spectrochim. Acta A 136 256

    [19]

    Jung C Y, Yao W, Park J M, Hyun I H, Seong D H, Jaung J Y 2015 Tetrahedron Lett. 56 6915

    [20]

    Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558

    [21]

    Achaby M E, Miri N E, Snik A, Zahouily M, Abdelouahdi K, Fihri A, Barakat A, Solhy A 2016 J. Appl. Polym. Sci. 133 42356

    [22]

    Zhu H W, Xu Z P, Xie D 2011 Graphene: Structure, Synthetic Methods, Characterization (1st Ed.) (Beijing: Tsinghua University Press ) pp25-28 (in Chinese) [朱宏伟, 徐志平, 谢丹 2011石墨烯: 结构、制备方法与性能表征(第一版)(北京: 清华大学出版社) 第25-28页]

    [23]

    Gao W, Majumder M, Alemany L B, Narayanan T N, Ibarra M A, Pradhan B K, Ajayan P M 2011 ACS Appl. Mater. Interfaces 3 1821

    [24]

    Wu J X, Xu H, Zhang J 2014 Acta Chim. Sinica 72 301 (in Chinese) [吴娟霞, 徐华, 张锦 2014 化学学报 72 301]

    [25]

    Shi H C 2014 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese) [师浩淳 2014 博士学位论文 (天津: 天津大学)]

    [26]

    Ai L H, Jiang J 2012 Chem. Eng. J. 192 156

    [27]

    Tang L, Cai Y, Yang G D, Liu Y Y, Zeng G M, Zhou Y Y, Li S S, Wang J J, Zhang S, Fang Y, He Y B 2014 Appl. Surf. Sci. 314 746

    [28]

    Liu F, Chung S, Oh G, Seo T S 2012 ACS Appl. Mater. Interfaces 4 922

    [29]

    Aksu Z 2001 Biochem. Eng. J. 7 79

    [30]

    Ho Y S, Mckay G 1999 Process Biochem. 34 451

    [31]

    Ding S M, Feng X H, Wang Y T, Peng Q 2005 J. Anal. Sci. 21 127 (in Chinese) [丁世敏, 封享华, 汪玉庭, 彭祺 2005 分析科学学报 21 127]

  • [1]

    Gupta V K, Mohan D, Sharma S, Sharma M 2000 Sep. Sci. Technol. 35 2097

    [2]

    Shi H C, Li W S, Zhong L, Xu C J 2014 Ind. Eng. Chem. Res. 53 1108

    [3]

    Chakraborty S, Purkait M K, Dasgupta S, De S, Basu J K 2003 Sep. Purif. Technol. 31 141

    [4]

    Yu S C, Liu M H, Ma M, Qi M, L Z H, Gao C J 2010 J. Membr. Sci. 350 83

    [5]

    Kim T H, Park C, Yang J, Kim S 2004 J. Hazard. Mater. 112 95

    [6]

    Sekaran G, Karthikeyan S, Boopathy R, Maharaja P, Gupta V K, Anandan C 2014 Environ. Sci. Pollut. Res. 21 1489

    [7]

    Parsa J B, Merati Z, Abbasi M 2013 J. Ind. Eng. Chem. 19 1350

    [8]

    Mohammed F M, Roberts E P L, Hill A, Campen A K, Brown N W 2011 Water Res. 45 3065

    [9]

    Ju D G, Byun I G, Park J J, Lee C H, Ahn G H, Park T J 2008 Bioresour. Technol. 99 7971

    [10]

    Namvari M, Namazi H 2014 Polym. Int. 63 1881

    [11]

    Huang Y H, Xu T F, Yang L Y 2013 Water Treatment Technology (1st Ed.) (Zhengzhou: The Yellow River Water Conservancy Press) pp243-254 (in Chinese) [黄跃华, 许铁夫, 杨丽英 2013 水处理技术(第一版)(郑州: 黄河水利出版社) 第243-254页]

    [12]

    Shen Z, Zhu Z Y, Zhang M C 2015 Environ. Sci. Technol. 28 68 (in Chinese) [沈众, 朱增银, 张满成 2015 环境科技 28 68]

    [13]

    Gao L, Wang Y G, Yan T, Cui L M, Hu L H, Yan L G, Wei Q, Du B 2015 New J.Chem. 39 2908

    [14]

    Shen Y, Fang Q, Chen B L 2015 Environ. Sci. Technol. 49 67

    [15]

    Bi H C, Xie X, Yin K B, Zhou Y L, Wan S, He L B, Xu F, Banhart F, Sun L T, Ruoff R S 2012 Adv. Funct. Mater. 22 4421

    [16]

    Zhou P P 2010 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese) [周盼盼 2010 博士学位论文 (兰州: 兰州大学)]

    [17]

    Peng Z 2013 M. S. Thesis (Kaifeng: Henan University) (in Chinese) [彭展2013 硕士学位论文 (开封: 河南大学)]

    [18]

    Vinothkannan M, Karthikeyan C, Kumar G G, Kim A R, Yoo D J 2015 Spectrochim. Acta A 136 256

    [19]

    Jung C Y, Yao W, Park J M, Hyun I H, Seong D H, Jaung J Y 2015 Tetrahedron Lett. 56 6915

    [20]

    Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558

    [21]

    Achaby M E, Miri N E, Snik A, Zahouily M, Abdelouahdi K, Fihri A, Barakat A, Solhy A 2016 J. Appl. Polym. Sci. 133 42356

    [22]

    Zhu H W, Xu Z P, Xie D 2011 Graphene: Structure, Synthetic Methods, Characterization (1st Ed.) (Beijing: Tsinghua University Press ) pp25-28 (in Chinese) [朱宏伟, 徐志平, 谢丹 2011石墨烯: 结构、制备方法与性能表征(第一版)(北京: 清华大学出版社) 第25-28页]

    [23]

    Gao W, Majumder M, Alemany L B, Narayanan T N, Ibarra M A, Pradhan B K, Ajayan P M 2011 ACS Appl. Mater. Interfaces 3 1821

    [24]

    Wu J X, Xu H, Zhang J 2014 Acta Chim. Sinica 72 301 (in Chinese) [吴娟霞, 徐华, 张锦 2014 化学学报 72 301]

    [25]

    Shi H C 2014 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese) [师浩淳 2014 博士学位论文 (天津: 天津大学)]

    [26]

    Ai L H, Jiang J 2012 Chem. Eng. J. 192 156

    [27]

    Tang L, Cai Y, Yang G D, Liu Y Y, Zeng G M, Zhou Y Y, Li S S, Wang J J, Zhang S, Fang Y, He Y B 2014 Appl. Surf. Sci. 314 746

    [28]

    Liu F, Chung S, Oh G, Seo T S 2012 ACS Appl. Mater. Interfaces 4 922

    [29]

    Aksu Z 2001 Biochem. Eng. J. 7 79

    [30]

    Ho Y S, Mckay G 1999 Process Biochem. 34 451

    [31]

    Ding S M, Feng X H, Wang Y T, Peng Q 2005 J. Anal. Sci. 21 127 (in Chinese) [丁世敏, 封享华, 汪玉庭, 彭祺 2005 分析科学学报 21 127]

  • [1] Li Xing-Long, Zhao Hao-Yu, Wu Wen-Jie, Jiang Wei-Feng, Zheng Jia-Jin, Zhang Zu-Xing, Yu Ke-Han, Wei Wei. Graphene oxide modified tilted fiber Bragg grating for 10–12 level heavy metal ion sensing. Acta Physica Sinica, 2022, 71(5): 050702. doi: 10.7498/aps.71.20211315
    [2] Wu Hong-Fen, Feng Pan-Jun, Zhang Shuo, Liu Da-Peng, Gao Miao, Yan Xun-Wang. First-principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [3] First principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211631
    [4] Chen Chao, Duan Fang-Li. Effect of functional groups on crumpling behavior and structure of graphene oxide. Acta Physica Sinica, 2020, 69(19): 193102. doi: 10.7498/aps.69.20200651
    [5] Lin Qi-Min, Zhang Xia, Lu Qi-Chao, Luo Yan-Bin, Cui Jian-Gong, Yan Xin, Ren Xiao-Min, Huang Xue. First-principles study on structural stability of graphene oxide and catalytic activity of nitric acid. Acta Physica Sinica, 2019, 68(24): 247302. doi: 10.7498/aps.68.20191304
    [6] Mo Jia-Wei, Qiu Yin-Wei, Yi Ruo-Bing, Wu Jun, Wang Zhi-Kun, Zhao Li-Hua. Temperature-dependent properties of metastable graphene oxide. Acta Physica Sinica, 2019, 68(15): 156501. doi: 10.7498/aps.68.20190670
    [7] Sun Rui, Chen Chen, Ling Wei-Jun, Zhang Ya-Ni, Kang Cui-Ping, Xu Qiang. Watt-level passively Q-switched mode-locked Tm: LuAG laser with graphene oxide saturable absorber. Acta Physica Sinica, 2019, 68(10): 104207. doi: 10.7498/aps.68.20182224
    [8] Qiao Zhi-Xing, Qin Cheng-Bing, He Wen-Jun, Gong Ya-Ni, Xiao Lian-Tuan, Zhang Guo-Feng, Chen Rui-Yun, Gao Yan, Jia Suo-Tang. Lifetime modulation of graphene oxide film by laser direct writing for the fabrication of micropatterns. Acta Physica Sinica, 2018, 67(6): 066802. doi: 10.7498/aps.67.20172331
    [9] Chen Hao, Peng Tong-Jiang, Liu Bo, Sun Hong-Juan, Lei De-Hui. Effect of reduction temperature on structure and hydrogen sensitivity of graphene oxides at room temperature. Acta Physica Sinica, 2017, 66(8): 080701. doi: 10.7498/aps.66.080701
    [10] Sun Jian-Ping, Zhou Ke-Liang, Liang Xiao-Dong. Density functional study on the adsorption characteristics of O, O2, OH, and OOH of B-, P-doped, and B, P codoped graphenes. Acta Physica Sinica, 2016, 65(1): 018201. doi: 10.7498/aps.65.018201
    [11] Lin Wen-Qiang, Xu Bin, Chen Liang, Zhou Feng, Chen Jun-Lang. Molecular dynamics simulations of the adsorption of bisphenol A on graphene oxide. Acta Physica Sinica, 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [12] Huang Yan-Ping, Yuan Jian-Mei, Guo Gang, Mao Yu-Liang. First-principles study on saturated adsorption of alkali metal atoms on silicene. Acta Physica Sinica, 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [13] Huang Shi-Sheng, Wang Yong-Gang, Li Hui-Quan, Lin Rong-Yong, Yan Pei-Guang. Experimental studies of multiple pulses in a passively ytterbium-doped fiber laser based on graphene-oxide saturable absorber. Acta Physica Sinica, 2014, 63(8): 084202. doi: 10.7498/aps.63.084202
    [14] Lu Jing-Jing, Feng Miao, Zhan Hong-Bing. Preparation of graghene oxide/chitosan composite films and investigations on their nonlinear optical limiting effect. Acta Physica Sinica, 2013, 62(1): 014204. doi: 10.7498/aps.62.014204
    [15] Sun Jian-Ping, Miao Ying-Meng, Cao Xiang-Chun. Density functional theory studies of O2 and CO adsorption on the graphene doped with Pd. Acta Physica Sinica, 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [16] Gao Yan, Chen Rui-Yun, Wu Rui-Xiang, Zhang Guo-Feng, Xiao Lian-Tuan, Jia Suo-Tang. Electric field induced polarization dynamics of graphene oxide. Acta Physica Sinica, 2013, 62(23): 233601. doi: 10.7498/aps.62.233601
    [17] Chen Gang, Zhuang De-Wen, Zhang Hang, Xu Jun, Cheng Cheng. A difference method to solve the laser kinetic model involving temporal-special evolution. Acta Physica Sinica, 2008, 57(8): 4953-4959. doi: 10.7498/aps.57.4953
    [18] Xiao Zhong-Yin, Wang Ting-Yun, Luo Wen-Yun, Wang Zi-Hua. Mechanism of E′ center formed by irradiation with high energy particles in silica glasses. Acta Physica Sinica, 2008, 57(4): 2273-2277. doi: 10.7498/aps.57.2273
    [19] A kinetics model for alternate oscillation of self-terminating and recombination lasers in strontium ions. Acta Physica Sinica, 2007, 56(12): 6976-6981. doi: 10.7498/aps.56.6976
    [20] Fan Kang-Qi, Jia Jian-Yuan, Zhu Ying-Min, Liu Xiao-Yuan. Dynamic model of atomic force microscopy in tapping-mode. Acta Physica Sinica, 2007, 56(11): 6345-6351. doi: 10.7498/aps.56.6345
Metrics
  • Abstract views:  5490
  • PDF Downloads:  388
  • Cited By: 0
Publishing process
  • Received Date:  16 March 2016
  • Accepted Date:  06 May 2016
  • Published Online:  05 July 2016

/

返回文章
返回