Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Great enhancement of transversal magneto-optical Kerr effect for magnetic dielectric film embedded by one-dimensional metallic grating

Chen Yu Liu Long Huang Zhong Tu Lin-Lin Zhan Peng

Citation:

Great enhancement of transversal magneto-optical Kerr effect for magnetic dielectric film embedded by one-dimensional metallic grating

Chen Yu, Liu Long, Huang Zhong, Tu Lin-Lin, Zhan Peng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Transversal magneto-optical Kerr effect (TMOKE) has potential practical applications, such as biosensors, magnetic imaging, and date storage. However, these potential applications have been restricted by its very weak response (about 0.1%) in natural ferromagnetic metal material such as Fe, Co and Ni. Fortunately, with the development of the nanofabrication techniques, surface plasmons (SPs) are one of the effective strategies to solve this problem due to their special ability to manipulate light on a nanoscale and concentrate the electromagnetic energy near the metal/dielectric interface. Herein, in order to enhance the TMOKE response, we propose that a periodic gold strips array is embedded into a magnetic dielectric film of bismuth iron garnet (BIG), which is supported by a quartz substrate. Using the finite element method, we numerically study the optical properties of our proposed microstructure and the corresponding evolution of the TMOKE responses due to the coupled optical modes dependent on the structural parameters. Particularly, by optimizing the embedded depth of metal grating, a dramatic enhancement of TMOKE response (about 3.6%) is achieved when the embedded depth reaches up to 80 nm, accompanied with a high transmissivity about 22.6%, which is actually three time larger than that in the case that the gold strips are just patterned on the surface of the BIG film. As the embedding depth increases further, the TMOKE response will be weak. The relationship between the TMOKE response and the coupling efficiency of LSP resonance of the gold stripes and the waveguide (WG) mode supported by the BIG film are also discussed systematically. As the embedding depth increases up to 80 nm gradually, the coupling of the WG mode in BIG film with the LSP mode of the individual gold stripe becomes much stronger and forms a highly efficient Fano resonance, which leads to the fact that most of the electromagnetic field is localized in the BIG film and strong interaction with the BIG magnetic dielectric film, and thus, an enhancement of TMOKE response can be observed. However, when the embedded depth increases further, the uniformity of BIG film will be broken. In this case, WG mode cannot be supported by BIG film very well any more at the wavelength corresponding to excitation of the LSP, which results in a weakly coupling efficiency between LSP and WG mode. In this case, the Fano resonance cannot be formed and rare electromagnetic field can be localized in the BIG film, leading to a very weak light-magnetic dielectric film interaction and the weak TMOKE response. Our study proposes a new method to realize the amplification of weak TMOKE response by utilizing the plasmonic microstructure, which might have a potential application to designing the high-efficiency magneto-optical devices.
      Corresponding author: Zhan Peng, zhanpeng@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274160) and the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91221206).
    [1]

    Liu G Q, Le Z Q, Shen D F 2001 Magnetooptics (Shanghai: Shanghai Science and Technology Press) p1 (in Chinese) [刘公强, 乐志强, 沈德芳 2001 磁光学(上海: 上海科学技术出版社)第1页]

    [2]

    Aoshima K, Funabashi N, Machida K, Miyamoto Y, Kuga K, Ishibashi T, Shimidzu N, Sato F 2010 J. Display Technol. 6 374

    [3]

    Mitsuteru I, Miguel L, Alexander V B 2013 Magetophotonics (Berlin Heidelberg: Springer-Verlag) p63

    [4]

    Fang K J, Yu Z F, Liu V, Fan S H 2011 Opt. Lett. 36 4254

    [5]

    Koerdt C, Rikken G L J A, Petrov E P 2003 Appl. Phys. Lett. 82 1538

    [6]

    Kostylev N, Maksymov I S, Adeyeye A O, Samarin S, Kostylev M, Williams J F 2013 Appl. Phys. Lett. 102 121907

    [7]

    Wang Z L 2009 Progress in Physics 29 287 (in Chinese) [王振林 2009 物理学进展 29 287]

    [8]

    Grunin A A, Zhdanov A G, Ezhov A A, Ganshina E A, Fedyanin A A 2010 Appl. Phys. Lett. 97 261908

    [9]

    Newman D M, Wears M L, Matelon R J, Hooper I R 2008 J. Phys. Condens. Matter 20 345230

    [10]

    Sapozhnikov M V, Gusev S A, Troitskii B B, Khokhlova L V 2011 Opt. Lett. 36 4197

    [11]

    Armelles G, Bgonzlez-Daz J, Garca-Martn A, Garca-Martn J M, Cebollada A, Gonzlez M U, Acimovic S, Cesario J, Quidant R, Badenes G 2008 Opt. Express 16 16104

    [12]

    Clavero C, Yang K, Skuza J R, Lukaszew R A 2010 Opt. Express 18 7743

    [13]

    Clavero C, Yang K, Skuza J R, Lukaszew R A 2010 Opt. Lett. 35 1557

    [14]

    Belotelov V I, Akimov I A, Pohl M, Kotov V A, Kasture S, Vengurlekar A S, Gopal A V, Yakovlev D R, Zvezdin A K, Bayer M 2011 Nat. Nanotechnol. 6 370

    [15]

    Kreilkamp L E, Belotelov V I, Chin J Y, Neutzner S, Dregely D, Wehlus T, Akimov I A, Bayer M, Stritzker B, Giessen H 2013 Phys. Rev. X 3 041019

    [16]

    Linden S, Kuhl J, Giessen H 2001 Phys. Rev. Lett. 86 4688

    [17]

    Christ A, Tikhodeev S G, Gippius N A, Kuhl J, Giessen H 2003 Phys. Rev. Lett. 91 183901

    [18]

    Zhang J, Cai L K, Bai W L, Song G F 2010 Opt. Lett. 35 3408

    [19]

    Pohl M, Kreilkamp L E, Belotelov V I, Akimov I A, Kalish A N, Khokhlov N E, Yallapragada V J, Gopal A V, Nur-E-Alam M, Vasiliev M, Yakovlev D R, Alameh K, Zvezdin A K, Bayer M 2013 New J. Phys. 15 075024

    [20]

    Grunin A A, Sapoletova N A, Napolskii K S, Eliseev A A, Fedyanin A A 2012 J. Appl. Phys. 111 07A948

    [21]

    Ordal M A, Long L L, Bell R J, Bell S E, Bell R R, Alexander Jr R W, Ward C A 1983 Appl. Opt. 22 1099

  • [1]

    Liu G Q, Le Z Q, Shen D F 2001 Magnetooptics (Shanghai: Shanghai Science and Technology Press) p1 (in Chinese) [刘公强, 乐志强, 沈德芳 2001 磁光学(上海: 上海科学技术出版社)第1页]

    [2]

    Aoshima K, Funabashi N, Machida K, Miyamoto Y, Kuga K, Ishibashi T, Shimidzu N, Sato F 2010 J. Display Technol. 6 374

    [3]

    Mitsuteru I, Miguel L, Alexander V B 2013 Magetophotonics (Berlin Heidelberg: Springer-Verlag) p63

    [4]

    Fang K J, Yu Z F, Liu V, Fan S H 2011 Opt. Lett. 36 4254

    [5]

    Koerdt C, Rikken G L J A, Petrov E P 2003 Appl. Phys. Lett. 82 1538

    [6]

    Kostylev N, Maksymov I S, Adeyeye A O, Samarin S, Kostylev M, Williams J F 2013 Appl. Phys. Lett. 102 121907

    [7]

    Wang Z L 2009 Progress in Physics 29 287 (in Chinese) [王振林 2009 物理学进展 29 287]

    [8]

    Grunin A A, Zhdanov A G, Ezhov A A, Ganshina E A, Fedyanin A A 2010 Appl. Phys. Lett. 97 261908

    [9]

    Newman D M, Wears M L, Matelon R J, Hooper I R 2008 J. Phys. Condens. Matter 20 345230

    [10]

    Sapozhnikov M V, Gusev S A, Troitskii B B, Khokhlova L V 2011 Opt. Lett. 36 4197

    [11]

    Armelles G, Bgonzlez-Daz J, Garca-Martn A, Garca-Martn J M, Cebollada A, Gonzlez M U, Acimovic S, Cesario J, Quidant R, Badenes G 2008 Opt. Express 16 16104

    [12]

    Clavero C, Yang K, Skuza J R, Lukaszew R A 2010 Opt. Express 18 7743

    [13]

    Clavero C, Yang K, Skuza J R, Lukaszew R A 2010 Opt. Lett. 35 1557

    [14]

    Belotelov V I, Akimov I A, Pohl M, Kotov V A, Kasture S, Vengurlekar A S, Gopal A V, Yakovlev D R, Zvezdin A K, Bayer M 2011 Nat. Nanotechnol. 6 370

    [15]

    Kreilkamp L E, Belotelov V I, Chin J Y, Neutzner S, Dregely D, Wehlus T, Akimov I A, Bayer M, Stritzker B, Giessen H 2013 Phys. Rev. X 3 041019

    [16]

    Linden S, Kuhl J, Giessen H 2001 Phys. Rev. Lett. 86 4688

    [17]

    Christ A, Tikhodeev S G, Gippius N A, Kuhl J, Giessen H 2003 Phys. Rev. Lett. 91 183901

    [18]

    Zhang J, Cai L K, Bai W L, Song G F 2010 Opt. Lett. 35 3408

    [19]

    Pohl M, Kreilkamp L E, Belotelov V I, Akimov I A, Kalish A N, Khokhlov N E, Yallapragada V J, Gopal A V, Nur-E-Alam M, Vasiliev M, Yakovlev D R, Alameh K, Zvezdin A K, Bayer M 2013 New J. Phys. 15 075024

    [20]

    Grunin A A, Sapoletova N A, Napolskii K S, Eliseev A A, Fedyanin A A 2012 J. Appl. Phys. 111 07A948

    [21]

    Ordal M A, Long L L, Bell R J, Bell S E, Bell R R, Alexander Jr R W, Ward C A 1983 Appl. Opt. 22 1099

  • [1] Xiao Yong, Cao Yu-Sheng. Modal analysis of planar waveguides by the immersed interface method. Acta Physica Sinica, 2023, 72(14): 140201. doi: 10.7498/aps.72.20230595
    [2] Wu Han, Wu Jing-Yu, Chen Zhuo. Strong coupling between metasurface based Tamm plasmon microcavity and exciton. Acta Physica Sinica, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [3] Qi Yun-Ping, Zhang Ting, Guo Jia, Zhang Bao-He, Wang Xiang-Xian. High performance temperature and refractive index dual-purpose sensor based on the ethanol-sealed metal-dielectric-metal waveguide. Acta Physica Sinica, 2020, 69(16): 167301. doi: 10.7498/aps.69.20200405
    [4] Zhang Duo-Duo, Liu Xiao-Feng, Qiu Jian-Rong. Ultrafast optical switches and pulse lasers based on strong nonlinear optical response of plasmon nanostructures. Acta Physica Sinica, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [5] Zhang Bao-Bao, Zhang Cheng-Yun, Zhang Zheng-Long, Zheng Hai-Rong. Surface plasmon mediated chemical reaction. Acta Physica Sinica, 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [6] Li Pan. Research progress of plasmonic nanofocusing. Acta Physica Sinica, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [7] Zhang Wen-Jun, Gao Long, Wei Hong, Xu Hong-Xing. Modulation of propagating surface plasmons. Acta Physica Sinica, 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [8] Wang Han-Cong, Li Zhi-Peng. Advances in surface-enhanced optical forces and optical manipulations. Acta Physica Sinica, 2019, 68(14): 144101. doi: 10.7498/aps.68.20190606
    [9] Wang Shan-Jiang, Su Dan, Zhang Tong. Research progress of surface plasmons mediated photothermal effects. Acta Physica Sinica, 2019, 68(14): 144401. doi: 10.7498/aps.68.20190476
    [10] Chen Lu, Chen Yue-Gang. Surface plasmon polaritons’ propagation controlled by metal-photorefractive material composite holographical structure. Acta Physica Sinica, 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [11] Zhou Qiang, Lin Shu-Pei, Zhang Pu, Chen Xue-Wen. Quasinormal mode analysis of extremely localized optical field in body-of-revolution plasmonic structures. Acta Physica Sinica, 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [12] Cheng Zi-Qiang, Shi Hai-Quan, Yu Ping, Liu Zhi-Min. Surface-enhanced Raman scattering effect of silver nanoparticles array. Acta Physica Sinica, 2018, 67(19): 197302. doi: 10.7498/aps.67.20180650
    [13] Wang Dong, Xu Jun, Chen Yi-Hang. Broadband absorption caused by coupling of epsilon-near-zero mode with plasmon mode. Acta Physica Sinica, 2018, 67(20): 207301. doi: 10.7498/aps.67.20181106
    [14] Wang Wen-Hui,  Zhang Nao. Energy loss of surface plasmon polaritons on Ag nanowire waveguide. Acta Physica Sinica, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [15] Yang Yun-Ru, Guan Jian-Fei. Numerical study of plasmonic filter based on metal-insulator-metal waveguide. Acta Physica Sinica, 2016, 65(5): 057301. doi: 10.7498/aps.65.057301
    [16] Hu Chang-Bao, Xu Ji, Ding Jian-Ping. Subwavelength light focusing using quadric cylinder surface plasmonic lens with gold film slits filled with dielectric. Acta Physica Sinica, 2016, 65(13): 137301. doi: 10.7498/aps.65.137301
    [17] Huang Zhi-Fang, Ni Ya-Xian, Sun Hua. Localized surface plasmon resonance and the size effects of magneto-optic rods. Acta Physica Sinica, 2016, 65(11): 114202. doi: 10.7498/aps.65.114202
    [18] Hu Meng-Zhu, Zhou Si-Yang, Han Qin, Sun Hua, Zhou Li-Ping, Zeng Chun-Mei, Wu Zhao-Feng, Wu Xue-Mei. Ultraviolet surface plasmon polariton propagation for ZnO semiconductor-insulator-metal waveguides. Acta Physica Sinica, 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [19] Zhu Hua, Yan Zhen-Dong, Zhan Peng, Wang Zhen-Lin. Enhanced third harmonic generation by localized surface plasmon excitation. Acta Physica Sinica, 2013, 62(17): 178104. doi: 10.7498/aps.62.178104
    [20] Zhang Rui, Yang Ya-Ping. Analysis of modes in  pairing of single-negative material. Acta Physica Sinica, 2010, 59(4): 2451-2456. doi: 10.7498/aps.59.2451
Metrics
  • Abstract views:  5870
  • PDF Downloads:  307
  • Cited By: 0
Publishing process
  • Received Date:  15 April 2016
  • Accepted Date:  12 May 2016
  • Published Online:  05 July 2016

/

返回文章
返回