Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mesoscale Simulation of self-diffusiophoretic microrotor

Shen Ming-Ren Liu Rui Hou Mei-Ying Yang Ming-Cheng Chen Ke

Citation:

Mesoscale Simulation of self-diffusiophoretic microrotor

Shen Ming-Ren, Liu Rui, Hou Mei-Ying, Yang Ming-Cheng, Chen Ke
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Artificial micro-scale or nano-scale machines that are capable of converting energy to mechanical work, have long been pursued by science and engineering communities for their potential applications in microfluidics, biology and medicine. From a physics point of view, they are also ideal models to investigate fundamental statistical phenomena in non-equilibrium active matters. Inspired by bio-machines and bio-motors like ATP synthase and flagellum motors, we propose a simple design of rotary motors based on pure self-diffusiophoresis effects. The basic design of the rotor consists of three colloidal beads with different surface properties, which leads to different interactions between the beads and solvent molecules. Chemical reactions are imposed on the surface of one of the beads, which creates a source of one of the two solvent molecules and generates a local concentration gradient. The other two beads connected to the catalytic bead have different affinities to the solvent molecules, which leads to asymmetric diffusiophoretic forces on the two non-catalytic beads. A net torque is thus obtained from difference of the diffusiophoretic forces between the two non-catalytic beads. In our simulation, we employ hybrid molecular dynamics (MD) simulations and multi-particle collision dynamics (MPC) to investigate the motion of microrotors. The binary fluid is composed with A-type and B-type solvent particle whose interactions are described by multi-particle collision dynamics while beads-particle interactions are modeled by molecular dynamics. In MPC, all fluid particles execute alternating streaming and collision steps. During streaming steps, the solvents move ballistically. During collision steps, particles are sorted into square cells and only interact with particles in the same cell under a specific stochastic rotation rule. MPC algorithm locally conserves mass, linear momentum, angular momentum and energy, and properly captures thermal fluctuation, mass diffusion, dissipation and hydrodynamic interactions. In our simulation, standard MPC parameters are employed which correspond to a liquid-like behavior of fluid. In MD, beads-solvent interactions are described by Lennard-Jones(LJ) potential with different parameter combinations and the equations of motion is integrated by velocity-Verlet algorithm. To perform hybrid molecular dynamic simulations with multi-particle collision dynamics, between two MPC collision steps, 50 MD steps are implemented for the solvent particles that are in the interaction range of colloidal beads. We first investigate the solvent concentration distribution around static microrotor, and confirm that the catalytic bead generates a steady-state local concentration gradient. Net angular displacements are obtained when the rotor is allowed to rotate freely. The rotational direction and speed of the micorotor are determined by bead-solvent interactions, the rotor geometry, the solvent viscosity and the catalytic reaction ratio. We also study the scenario in which two rotors are placed in close vicinity to each other. We find that the coupling between the concentration fields around the rotors reduces the rotational speed of both rotors.
      Corresponding author: Yang Ming-Cheng, mcyang@iphy.ac.cn;kechen@iphy.ac.cn ; Chen Ke, mcyang@iphy.ac.cn;kechen@iphy.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2015CB856800), and the National Natural Science Foundation of China (Grant Nos. 11474327, 11404379).
    [1]

    Wang J 2013 Nanomachines: Fundamentals and Applications (Weinheim: John Wiley Sons) pp1-9

    [2]

    Elgeti J, Winkler R G, Gompper G 2015 Rep. Prog. Phys. 78 056601

    [3]

    Berg H C 2003 Annu. Rev. Biochem. 72 19

    [4]

    Stock D, Leslie A G, Walker J E 1999 Science 286 1700

    [5]

    Kay E R, Leigh D A, Zerbetto F 2007 Angew. Chem. Int. Ed. 46 72

    [6]

    Sengupta S, Ibele M E, Sen A 2012 Angew. Chem. Int. Ed. 51 8434

    [7]

    Purcell E M 1977 Am. J. Phys. 45 3

    [8]

    Lauga E 2011 Soft Matter 7 3060

    [9]

    Lauga E, Powers T R 2009 Rep. Prog. Phys. 72 096601

    [10]

    Dey K K, Zhao X, Tansi B M, Mndez-Ortiz W J, Crdova-Figueroa U M, Golestanian R, Sen A 2015 Nano Lett. 15 8311

    [11]

    Angelani L, Di Leonardo R, Ruocco G 2009 Phys. Rev. Lett. 102 048104

    [12]

    Paxton W F, Kistler K C, Olmeda C C, Sen A, St. Angelo S K, Cao Y, Mallouk T E, Lammert P E, Crespi V H 2004 J. Am. Chem. Soc. 126 13424

    [13]

    Schez S, Soler L, Katuri J 2015 Angew. Chem. Int. Ed. 54 1414

    [14]

    Fournier-Bidoz S, Arsenault A C, Manners I, Ozin G A 2005 Chem. Commun. 4 441

    [15]

    Catchmark J M, Subramanian S, Sen A 2005 Small 1 202

    [16]

    He Y, Wu J, Zhao Y 2007 Nano Lett. 7 1369

    [17]

    Qin L, Banholzer M J, Xu X, Huang L, Mirkin C A 2007 J. Am. Chem. Soc. 129 14870

    [18]

    Fattah Z, Loget G, Lapeyre V, Garrigue P, Warakulwit C, Limtrakul J, Bouffier L, Kuhn A 2011 Electrochim. Acta 56 10562

    [19]

    Wang Y, Fei S, Byun Y M, Lammert P E, Crespi V H, Sen A, Mallouk T E 2009 J. Am. Chem. Soc. 131 9926

    [20]

    Ebbens S, Jones R A, Ryan A J, Golestanian R, Howse J R 2010 Phys. Rev. E 82 015304

    [21]

    Anderson J L 1989 Annu. Rev. Fluid Mech. 21 61

    [22]

    Yang M, Ripoll M, Chen K 2015 J. Chem. Phys. 142 054902

    [23]

    Malevanets A, Kapral R 1999 J. Chem. Phys. 110 8605

    [24]

    Yang M, Liu R, Ripoll M, Chen K 2015 Lab. Chip. 15 3912

    [25]

    Padding J, Louis A 2006 Phys. Rev. E 74 031402

    [26]

    Winkler R, Mussawisade K, Ripoll M, Gompper G 2004 J. Phys. Condens. Matter 16 S3941

    [27]

    Peltomki M, Gompper G 2013 Soft Matter 9 8346

    [28]

    Noguchi H, Gompper G 2004 Phys. Rev. Lett. 93 258102

    [29]

    Gompper G, Ihle T, Kroll D, Winkler R 2009 Multi-particle Collision Dynamics: a Particle-based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids (Berlin: Springer) pp1-87

    [30]

    Ryder J F 2005 Ph. D. Dissertation (Oxford: University of Oxford)

    [31]

    Yang M, Ripoll M 2014 Soft Matter 10 1006

    [32]

    Yang M, Wysocki A, Ripoll M 2014 Soft Matter 10 6208

    [33]

    Rckner G, Kapral R 2007 Phys. Rev. Lett. 98 150603

    [34]

    Tao Y G, Kapral R 2010 Soft Matter 6 756

    [35]

    Huang M J, Schofield J, Kapral R 2016 Soft Matter 12 5581

    [36]

    Friese M, Rubinsztein-Dunlop H, Gold J, Hagberg P, Hanstorp D 2001 Appl. Phys. Lett. 78 547

    [37]

    Grier D G 2003 Nature 424 810

    [38]

    Rapaport D C 2004 The Art of Molecular Dynamics Simulation (Cambridge: Cambridge University Press) pp60-62

    [39]

    Tzel E, Ihle T, Kroll D M 2006 Phys. Rev. E 74 056702

    [40]

    Bricard A, Caussin J B, Desreumaux N, Dauchot O, Bartolo D 2013 Nature 503 95

    [41]

    Nguyen N H, Klotsa D, Engel M, Glotzer S C 2014 Phys. Rev. Lett. 112 075701

  • [1]

    Wang J 2013 Nanomachines: Fundamentals and Applications (Weinheim: John Wiley Sons) pp1-9

    [2]

    Elgeti J, Winkler R G, Gompper G 2015 Rep. Prog. Phys. 78 056601

    [3]

    Berg H C 2003 Annu. Rev. Biochem. 72 19

    [4]

    Stock D, Leslie A G, Walker J E 1999 Science 286 1700

    [5]

    Kay E R, Leigh D A, Zerbetto F 2007 Angew. Chem. Int. Ed. 46 72

    [6]

    Sengupta S, Ibele M E, Sen A 2012 Angew. Chem. Int. Ed. 51 8434

    [7]

    Purcell E M 1977 Am. J. Phys. 45 3

    [8]

    Lauga E 2011 Soft Matter 7 3060

    [9]

    Lauga E, Powers T R 2009 Rep. Prog. Phys. 72 096601

    [10]

    Dey K K, Zhao X, Tansi B M, Mndez-Ortiz W J, Crdova-Figueroa U M, Golestanian R, Sen A 2015 Nano Lett. 15 8311

    [11]

    Angelani L, Di Leonardo R, Ruocco G 2009 Phys. Rev. Lett. 102 048104

    [12]

    Paxton W F, Kistler K C, Olmeda C C, Sen A, St. Angelo S K, Cao Y, Mallouk T E, Lammert P E, Crespi V H 2004 J. Am. Chem. Soc. 126 13424

    [13]

    Schez S, Soler L, Katuri J 2015 Angew. Chem. Int. Ed. 54 1414

    [14]

    Fournier-Bidoz S, Arsenault A C, Manners I, Ozin G A 2005 Chem. Commun. 4 441

    [15]

    Catchmark J M, Subramanian S, Sen A 2005 Small 1 202

    [16]

    He Y, Wu J, Zhao Y 2007 Nano Lett. 7 1369

    [17]

    Qin L, Banholzer M J, Xu X, Huang L, Mirkin C A 2007 J. Am. Chem. Soc. 129 14870

    [18]

    Fattah Z, Loget G, Lapeyre V, Garrigue P, Warakulwit C, Limtrakul J, Bouffier L, Kuhn A 2011 Electrochim. Acta 56 10562

    [19]

    Wang Y, Fei S, Byun Y M, Lammert P E, Crespi V H, Sen A, Mallouk T E 2009 J. Am. Chem. Soc. 131 9926

    [20]

    Ebbens S, Jones R A, Ryan A J, Golestanian R, Howse J R 2010 Phys. Rev. E 82 015304

    [21]

    Anderson J L 1989 Annu. Rev. Fluid Mech. 21 61

    [22]

    Yang M, Ripoll M, Chen K 2015 J. Chem. Phys. 142 054902

    [23]

    Malevanets A, Kapral R 1999 J. Chem. Phys. 110 8605

    [24]

    Yang M, Liu R, Ripoll M, Chen K 2015 Lab. Chip. 15 3912

    [25]

    Padding J, Louis A 2006 Phys. Rev. E 74 031402

    [26]

    Winkler R, Mussawisade K, Ripoll M, Gompper G 2004 J. Phys. Condens. Matter 16 S3941

    [27]

    Peltomki M, Gompper G 2013 Soft Matter 9 8346

    [28]

    Noguchi H, Gompper G 2004 Phys. Rev. Lett. 93 258102

    [29]

    Gompper G, Ihle T, Kroll D, Winkler R 2009 Multi-particle Collision Dynamics: a Particle-based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids (Berlin: Springer) pp1-87

    [30]

    Ryder J F 2005 Ph. D. Dissertation (Oxford: University of Oxford)

    [31]

    Yang M, Ripoll M 2014 Soft Matter 10 1006

    [32]

    Yang M, Wysocki A, Ripoll M 2014 Soft Matter 10 6208

    [33]

    Rckner G, Kapral R 2007 Phys. Rev. Lett. 98 150603

    [34]

    Tao Y G, Kapral R 2010 Soft Matter 6 756

    [35]

    Huang M J, Schofield J, Kapral R 2016 Soft Matter 12 5581

    [36]

    Friese M, Rubinsztein-Dunlop H, Gold J, Hagberg P, Hanstorp D 2001 Appl. Phys. Lett. 78 547

    [37]

    Grier D G 2003 Nature 424 810

    [38]

    Rapaport D C 2004 The Art of Molecular Dynamics Simulation (Cambridge: Cambridge University Press) pp60-62

    [39]

    Tzel E, Ihle T, Kroll D M 2006 Phys. Rev. E 74 056702

    [40]

    Bricard A, Caussin J B, Desreumaux N, Dauchot O, Bartolo D 2013 Nature 503 95

    [41]

    Nguyen N H, Klotsa D, Engel M, Glotzer S C 2014 Phys. Rev. Lett. 112 075701

  • [1] Xin Yong, Bao Hong-Wei, Sun Zhi-Peng, Zhang Ji-Bin, Liu Shi-Chao, Guo Zi-Xuan, Wang Hao-Yu, Ma Fei, Li Yuan-Ming. Effects of Th doping on mechanical properties of U1–xThxO2: An atomistic simulation. Acta Physica Sinica, 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [2] Cui Jie, Su Jun-Jie, Wang Jun, Xia Guo-Dong, Li Zhi-Gang. Thermophoretic force on nanoparticles in free molecule regime. Acta Physica Sinica, 2021, 70(5): 055101. doi: 10.7498/aps.70.20201629
    [3] Li Xing-Xin, Li Si-Ping. Manipulations on mechanical properties of multilayer folded graphene by annealing temperature: a molecular dynamics simulation study. Acta Physica Sinica, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [4] Wang Qi-Dong, Peng Zeng-Hui, Liu Yong-Gang, Yao Li-Shuang, Ren Gan, Xuan Li. Rotational viscosity comparison of liquid crystals based on the molecular dynamics of mixtures. Acta Physica Sinica, 2015, 64(12): 126102. doi: 10.7498/aps.64.126102
    [5] Liu Li-Xia, Hou Zhao-Yang, Liu Rang-Su. Simulation study on the dynamic mechanisms of nucleation during the initial stage of supercooled liquid potassium. Acta Physica Sinica, 2012, 61(5): 056101. doi: 10.7498/aps.61.056101
    [6] Wang Jun, Zhang Bao-Ling, Zhou Yu-Lu, Hou Qing. Molecular dynamics simulation of helium behavior in tungsten matrix. Acta Physica Sinica, 2011, 60(10): 106601. doi: 10.7498/aps.60.106601
    [7] Yang Xiang-Dong, Lu Peng-Fei, Li Yong, Liu Jin-Chao. Molecular dynamic simulation of ethanol from ambient temperature and pressure to supercritical conditions. Acta Physica Sinica, 2010, 59(7): 4880-4887. doi: 10.7498/aps.59.4880
    [8] Yan Chao, Duan Jun-Hong, He Xing-Dao. Molecular dynamics simulation of low-energy bombardment on Pt(111) surface. Acta Physica Sinica, 2010, 59(12): 8807-8813. doi: 10.7498/aps.59.8807
    [9] Quan Wei-Long, Li Hong-Xuan, Ji Li, Zhao Fei, Du Wen, Zhou Hui-Di, Chen Jian-Min. Molecular dynamical simulation on the mechanical property of hydrogenated diamond-like carbon films. Acta Physica Sinica, 2010, 59(8): 5687-5691. doi: 10.7498/aps.59.5687
    [10] Zhang Ran, He Jun, Peng Zeng-Hui, Xuan Li. Molecular dynamics simulation of the rotational viscosity and its odd-even effect of nematic liquid crystals nCB(4-n-alkyl-4′-cyanobiphenyls, n=5—8). Acta Physica Sinica, 2009, 58(8): 5560-5566. doi: 10.7498/aps.58.5560
    [11] Meng Li-Juan, Li Rong-Wu, Liu Shao-Jun, Sun Jun-Dong. Molecular dynamics simulation of heterogeneous adatom diffusion on Cu(001) surface. Acta Physica Sinica, 2009, 58(4): 2637-2643. doi: 10.7498/aps.58.2637
    [12] Zhang Zhao-Hui, Han Kui, Li Hai-Peng, Tang Gang, Wu Yu-Xi, Wang Hong-Tao, Bai Lei. Study of friction between hydrocarboxylic acid Langmuir-Blodgett films and its mechanism using molecular dynamics simulation. Acta Physica Sinica, 2008, 57(5): 3160-3165. doi: 10.7498/aps.57.3160
    [13] Xie Fang, Zhu Ya-Bo, Zhang Zhao-Hui, Zhang Lin. Molecular dynamics simulation of multi-wall carbon nanotube oscillators. Acta Physica Sinica, 2008, 57(9): 5833-5837. doi: 10.7498/aps.57.5833
    [14] Li Mei-Li, Zhang Di, Sun Hong-Ning, Fu Xing-Ye, Yao Xiu-Wei, Li Cong, Duan Yong-Ping, Yan Yuan, Mu Hong-Chen, Sun Min-Hua. Molecular dynamics study of the phase separation and diffusion in Lennard-Jones binary liquid. Acta Physica Sinica, 2008, 57(11): 7157-7163. doi: 10.7498/aps.57.7157
    [15] Meng Li-Jun, Zhang Kai-Wang, Zhong Jian-Xin. Molecular dynamics simulation of formation of silicon nanoparticles on surfaces of carbon nanotubes. Acta Physica Sinica, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [16] Zhao Jiu-Zhou, Liu Jun, Zhao Yi, Hu Zhuang-Qi. Molecular dynamics simulation of the pressure effect on the formation of glassy Cu. Acta Physica Sinica, 2007, 56(1): 443-445. doi: 10.7498/aps.56.443
    [17] Li Rui, Hu Yuan-Zhong, Wang Hui, Zhang Yu-Jun. Molecular dynamics simulation of motion of single-walled carbon nanotubes on graphite substrate. Acta Physica Sinica, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
    [18] Wang Chang-Qing, Jia Yu, Ma Bing-Xian, Wang Song-You, Qin Zhen, Wang Fei, Wu Le-Ke, Li Xin-Jian. Molecular dynamics simulations of various metastable structures on Si(001) at different temperatures. Acta Physica Sinica, 2005, 54(9): 4313-4318. doi: 10.7498/aps.54.4313
    [19] Li Xin, Hu Yuan-Zhong, Wang Hui. A molecular dynamics study on lubricant perfluoropolyether in hard disk driver. Acta Physica Sinica, 2005, 54(8): 3787-3792. doi: 10.7498/aps.54.3787
    [20] Tang Xin, Zhang Chao, Zhang Qing-Yu. Study on the influence of three-dimensional Cu(111) islands on the diffusion of adatom by molecular dynamics simulation. Acta Physica Sinica, 2005, 54(12): 5797-5803. doi: 10.7498/aps.54.5797
Metrics
  • Abstract views:  6119
  • PDF Downloads:  532
  • Cited By: 0
Publishing process
  • Received Date:  20 June 2016
  • Accepted Date:  24 June 2016
  • Published Online:  05 September 2016

/

返回文章
返回