Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characterization tools for polymer thin films

Zeng Xian Yang Zhao-Hui Zhang Xiao-Hua

Citation:

Characterization tools for polymer thin films

Zeng Xian, Yang Zhao-Hui, Zhang Xiao-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The nanotechnology has emerged as an effective tool to fabricate next-generation microelectronics, biologically responsive materials, and structured membranes. The self-assembly of nanoscale phases has extensively been studied in thin films because of their potential applications in sub-100 nm structures. The control of the ordering of nanaoscale patterns is critical for various technological applications. A variety of approaches such as topographical and chemical patterning have resulted in an enhancement in long-range orders of nanoscale patterns. The macroscopically large areas of nanoscale domains with single-crystal order in polymer thin films can be utilized to fabricate portable ultra-high density data storages, advanced sensors and ultra-light electronic devices. However, as pattern size decreases below 100 nm, there appear many new challenges such as the cost of patterning and the precise control of the line edge roughness and line width roughness. Precisely controlling nanostructure shapes and placements in material is a continuing challenge. Measurement platform to provide accurate and detailed information about nanostructure orientations and placements is a key to this challenge. In this review, we examine the recent progress of characterization tools in polymer thin films. We highlight our efforts to control surface pattern formations of polymer thin films and our use of statistically-useful scattering techniques and real-space imaging tools to quantify the order of nanoscale patterns. In some technological applications of biological membranes, such as chemical separations, drug delivery and sensors, the orientation distribution of nanostructures is often more important. The real-space imaging methods of characterizing the orientation distribution of nanostructures, such as cross-sectional electron microscopy measurements and depth profiling by alternating etch and surface imaging steps are readily performed on thin polymer films over large areas. However, these real-space imaging techniques are destructive measures of nanostructures in polymer thin films. Also it is challenging to in-situ measure the evolution of orientation of nanoscale patterns during processing by using these destructive real-space imaging techniques. Rotational small-angle neutron scattering (RSANS) and grazing-incidence small-angle x-ray scattering (GISAXS) are effective and non-destructive measurement tools to measure the evolution of orientation distribution of nanoscale patterns during processing. In this rotational small angle neutron scattering method, the sample is rotated in the neuron beam. By accumulating the scattering density at each sample rotation angle, the three-dimensional Fourier space of the internal ordering in the nanostructured film can be mapped. By using this relatively new rotational small angle neutron scattering method and established models for nanoscale patterns, the full three-dimensional orientation distribution of nanoscale patterns can be obtained.
      Corresponding author: Yang Zhao-Hui, yangzhaohui@suda.edu.cn;zhangxiaohua@suda.edu.cn ; Zhang Xiao-Hua, yangzhaohui@suda.edu.cn;zhangxiaohua@suda.edu.cn
    • Funds: Project supported by the the National Natural Science Foundation of China (Grant Nos. 21274103, 21204059) and the Jiangsu Scientific and Technological Innovation Team (2013).
    [1]

    Alcoutlabi M, McKennad G B 2005 J. Phys.: Condens. Matter. 17 461

    [2]

    Kanaya T 2013 Glass Transition, Dynamics and Heterogeneity of Polymer Thin Films Advances in Polymer Science (Berlin: Springer) pp29-63

    [3]

    Keddie J L, Jones R A L, Cory R A 1994 Euro. Phys. Lett. 27 59

    [4]

    Forrest J A, Dalnoki-Veress K, Stevens J R, Dutcher J R 1996 Phys. Rev. Lett. 77 2002

    [5]

    Fukao K, Miyamoto Y 2000 Phys. Rev. E 61 1743

    [6]

    Ellison C J, Torkelson J M 2003 Nat. Mater. 2 695

    [7]

    Inoue R, Kanaya T, Nishida K, Tsukushi I, Shibata K 2005 Phys. Rev. Lett. 95 056102

    [8]

    Koh Y P, Mckenna G B, Simon S L 2006 Polym. Phys. 44 3518

    [9]

    Yang Z H, Fujii Y, Lee F K, Lam C H, Tsui O K C 2010 Science 328 1676

    [10]

    Napolitano S 2015 Non-equilibrium Phenomena in Confined Soft Matter (Switzerland: Springer) pp25-46

    [11]

    Jiang H, Dou N N, Fan G Q, Yang Z H, Zhang X H 2013 J. Chem. Phys. 139 124903

    [12]

    Shi H F, Jiang H, Fan G Q, Yang Z H, Zhang X H 2015 RSC Adv. 5 60015

    [13]

    Zhang X H, Yager K G, Fredin N J, Ro H W, Jones R L, Karim A, Douglas J F 2010 ACS Nano 4 3653

    [14]

    Tang C, Tracz A, Kruk M, Zhang R, Smilgies D M, Matyjaszewski K, Kowalewski T 2005 J. Am. Chem. Soc. 127 6918

    [15]

    Mller-Buschbaum P, Bauer E, Maurer E, Schlogl K, Roth S V, Gehrke R 2006 Appl. Phys. Lett. 88 083114

    [16]

    Zhang X, Yager K G, Douglas J F, Karim A 2014 Soft Matter 10 3656

    [17]

    Park S, Kwon K, Cho D, Lee B, Ree M, Chang T 2003 Macromolecules 36 4662

    [18]

    Meier R, Schindler M, Mller-Buschbaum P, Watts B 2011 Phys. Rev. B 84 174205

    [19]

    DeLongchamp D M, Kline R J, Fischer D A, Richter L J, Toney M F 2011 Adv. Mater. 23 319

    [20]

    Rogers J T, Schmidt K, Toney M F, Bazan G C, Kramer E 2012 J. Am. Chem. Soc. 134 2884

    [21]

    Kim B J, Miyamoto Y, Ma B, Frechet J M J 2009 Adv. Func. Mater. 19 2273

    [22]

    Smith K A, Lin Y H, Mok J W, Yager K G, Strzalka J, Nie W, Mohite A D, Verduzco R 2015 Macromolecules 48 8346

    [23]

    Reiter G 1994 Macromolecules 27 3046

    [24]

    Reiter G 1993 Europhys. Lett. 26 579

    [25]

    Schmitt J, Decher G, Dressick W J, Brandow S L, Geer R E, Shashidhar R, Calver J M 1997 Adv. Mater. 9 61

    [26]

    Swaraj S, Wang C, Yan HP, Watts B, Jan L N, McNeill C R, Ade H 2010 Nano Lett. 10 2863

    [27]

    Ma W, Tumbleston J R, Wang M, Gann E, Huang F, Ade H 2013 Adv. Energy Mater. 3 864

    [28]

    Tong M H, Cho S, Rogers J T, Schmidt K, Hsu B B Y, Moses D, Coffin R C, Kramer E J, Bazan G C, Heeger A J 2010 Adv. Funct. Mater. 20 3959

    [29]

    Lai L F, Yang H P, Wang L, Teh B K, Zhong J Q, Chou H, Chen L W, Chen W, Shen Z X, Ruoff R S 2012 ACS Nano 6 5941

    [30]

    Gurau M C, Delongchamp D M, Vogel B M, Lin E K, Fischer D A, Sambasivan S, Richter L J 2007 Langmuir 2 834

    [31]

    Morin C, Ikeura-Sekiguchi H, Tyliszczak T, Cornelius R, Brash J L, Hitchcock A P, Scholl A, Nolting F, Appel G, Winesett 2001 J. Electron Spectrosc. Relat. Phenom. 121 203

    [32]

    Zhang X H, Berry B C, Yager K G, Kim S, Jones R L, Satija S, Pickel D L, Douglas J F, Karim A 2008 ACS Nano 2 2331

    [33]

    Zhang X H, Douglas J F, Satija S, Karim A 2015 RSC Adv. 5 32307

    [34]

    Schmidt-Rohr K, Chen Q 2008 Nat. Mater. 7 75

    [35]

    Jones R L, Kumar S K, Ho D L, Briber R M, Russell T P 1999 Nature 400 146

    [36]

    Muller-Buschbaum P, Gutmann J S, Cubitt R, Petry W 2004 Phys. B 350 207

    [37]

    Tanaka M, Sackmann E 2005 Nature 437 656

    [38]

    Parnell A J, Dunbar A D F, Pearson A J, Staniec P A, Dennison A J C, Hamamatsu H, Skoda M W A, Lidzey D G, Jones R A L 2010 Adv. Mater. 22 2444

    [39]

    Kajiyama T, Tanaka K, Satomi N, Takahara A 1998 Macromolecules 31 5150

    [40]

    Hammerschmidt J A, Gladfelter W L, Haugstad G 1999 Macromolecules 32 3360

    [41]

    Tsui O K C, Wang X P, Ho J Y L, Ng T K, Xiao X 2000 Macromolecules 33 4198

    [42]

    Fryer D S, Peters R D, Kim E J, Tomaszewski J E, de Pablo J J, Nealey P F, White C C, Wu W L 2001 Macromolecules 34 5627

    [43]

    Fryer D S, Nealey P F, de Pablo J J 2000 Macromolecules 33 6439

    [44]

    Kawana S, Jones R A L 2001 Phys. Rev. E 63 021501

    [45]

    Mattsson J, Forrest J A, Borjesson L 2000 Phys. Rev. E 62 5187

    [46]

    Cheng W, Sainidou R, Burgardt P, Stefanou N, Kiyanova A, Efremov M, Fytas G, Nealey P F 2007 Macromolecules 40 7283

    [47]

    Hartschuh R, Ding Y, Roh J H, Kisliuk A, Sokolov A P, Soles C L, Jones R L, Hu T J, Wu W L, Mahorowala A P 2004 J. Polym. Sci., Part B: Polym. Phys. 42 1106

    [48]

    Kwak G, Fukao S, Fujiki M, Sakaguchi T, Masuda T 2006 Chem. Mater. 18 2081

    [49]

    Anastasiadis S H, Karatasos K, Vlachos G, Manias E, Giannelis E P 2000 Phys. Rev. Lett. 84 915

    [50]

    Rajendran S, Sivakumar M, Subadevi R 2004 Mater. Lett. 58 641

    [51]

    Tress M, Erber M, Mapesa E U, Huth H, Muller J, Serghei A, Schick C, Eichhorn K J, Volt B, Kremer F 2010 Macromolecules 43 9937

    [52]

    Flier B M, Baier M C, Huber J, Mullen K, Mecking S, Zumbusch A, Woll D 2012 J. Am. Chem. Soc. 134 480

    [53]

    Yung P K, Mckenna G B, Simon S L 2006 J. Polym. Sci., Part B: Polym. Phys. 44 3518

    [54]

    Efremov M Y, Olson E A, Zhang M, Zhang Z, Allen L H 2003 Phys. Rev. Lett. 91 085703

    [55]

    Madkour S, Yin H, Fullbrandt M, Schonhals A 2015 Soft Matter 11 7942

    [56]

    Glor E C, Composto R J, Fakhraai Z 2015 Macromolecules 48 6682

    [57]

    Zhang X, Lacerda S H, Yager K G, Berry B C, Douglas J F, Jones R L, Karim A 2009 ACS Nano 3 2115

    [58]

    Jinnai H, Kajihara T, Watashiba H, Nishikawa Y, Spontak R J 2001 Phys. Rev. E 64 010803

    [59]

    Park H W, Jung J, Chang T, Matsunaga K, Jinnai H 2009 J. Am. Chem. Soc. 131 46

    [60]

    Niihara K, Sugimori H, Matsuwaki U, Hirato F, Morita H, Doi M, Masunaga H, Sasaki S, Jinnai H 2008 Macromolecules 41 9318

    [61]

    Brinkmann M, Rannou P 2009 Macromolecules 42 1125

    [62]

    Salammal S T, Mikayelyan E, Grigorian S, Pietsch U, Koenen N, Scherf U 2012 Macromolecules 45 5575

    [63]

    Drummy L F, Yang J, Martin D C 2004 Ultramicroscopy 99 247

    [64]

    Donald A M, He C B, Royall C P, Sferrazza M, Stelmashenko N A, Thiel B L 2000 Colloids Surf. A 174 37

    [65]

    Marjanski M, Srinivasarao M, Mirau P A 1998 Solid State Nucl. Magn. Reson. 12 113

    [66]

    Fukushima T, Kimura H, Shimahara Y, Kaji H 2011 Appl. Phys.Lett. 99 223301

  • [1]

    Alcoutlabi M, McKennad G B 2005 J. Phys.: Condens. Matter. 17 461

    [2]

    Kanaya T 2013 Glass Transition, Dynamics and Heterogeneity of Polymer Thin Films Advances in Polymer Science (Berlin: Springer) pp29-63

    [3]

    Keddie J L, Jones R A L, Cory R A 1994 Euro. Phys. Lett. 27 59

    [4]

    Forrest J A, Dalnoki-Veress K, Stevens J R, Dutcher J R 1996 Phys. Rev. Lett. 77 2002

    [5]

    Fukao K, Miyamoto Y 2000 Phys. Rev. E 61 1743

    [6]

    Ellison C J, Torkelson J M 2003 Nat. Mater. 2 695

    [7]

    Inoue R, Kanaya T, Nishida K, Tsukushi I, Shibata K 2005 Phys. Rev. Lett. 95 056102

    [8]

    Koh Y P, Mckenna G B, Simon S L 2006 Polym. Phys. 44 3518

    [9]

    Yang Z H, Fujii Y, Lee F K, Lam C H, Tsui O K C 2010 Science 328 1676

    [10]

    Napolitano S 2015 Non-equilibrium Phenomena in Confined Soft Matter (Switzerland: Springer) pp25-46

    [11]

    Jiang H, Dou N N, Fan G Q, Yang Z H, Zhang X H 2013 J. Chem. Phys. 139 124903

    [12]

    Shi H F, Jiang H, Fan G Q, Yang Z H, Zhang X H 2015 RSC Adv. 5 60015

    [13]

    Zhang X H, Yager K G, Fredin N J, Ro H W, Jones R L, Karim A, Douglas J F 2010 ACS Nano 4 3653

    [14]

    Tang C, Tracz A, Kruk M, Zhang R, Smilgies D M, Matyjaszewski K, Kowalewski T 2005 J. Am. Chem. Soc. 127 6918

    [15]

    Mller-Buschbaum P, Bauer E, Maurer E, Schlogl K, Roth S V, Gehrke R 2006 Appl. Phys. Lett. 88 083114

    [16]

    Zhang X, Yager K G, Douglas J F, Karim A 2014 Soft Matter 10 3656

    [17]

    Park S, Kwon K, Cho D, Lee B, Ree M, Chang T 2003 Macromolecules 36 4662

    [18]

    Meier R, Schindler M, Mller-Buschbaum P, Watts B 2011 Phys. Rev. B 84 174205

    [19]

    DeLongchamp D M, Kline R J, Fischer D A, Richter L J, Toney M F 2011 Adv. Mater. 23 319

    [20]

    Rogers J T, Schmidt K, Toney M F, Bazan G C, Kramer E 2012 J. Am. Chem. Soc. 134 2884

    [21]

    Kim B J, Miyamoto Y, Ma B, Frechet J M J 2009 Adv. Func. Mater. 19 2273

    [22]

    Smith K A, Lin Y H, Mok J W, Yager K G, Strzalka J, Nie W, Mohite A D, Verduzco R 2015 Macromolecules 48 8346

    [23]

    Reiter G 1994 Macromolecules 27 3046

    [24]

    Reiter G 1993 Europhys. Lett. 26 579

    [25]

    Schmitt J, Decher G, Dressick W J, Brandow S L, Geer R E, Shashidhar R, Calver J M 1997 Adv. Mater. 9 61

    [26]

    Swaraj S, Wang C, Yan HP, Watts B, Jan L N, McNeill C R, Ade H 2010 Nano Lett. 10 2863

    [27]

    Ma W, Tumbleston J R, Wang M, Gann E, Huang F, Ade H 2013 Adv. Energy Mater. 3 864

    [28]

    Tong M H, Cho S, Rogers J T, Schmidt K, Hsu B B Y, Moses D, Coffin R C, Kramer E J, Bazan G C, Heeger A J 2010 Adv. Funct. Mater. 20 3959

    [29]

    Lai L F, Yang H P, Wang L, Teh B K, Zhong J Q, Chou H, Chen L W, Chen W, Shen Z X, Ruoff R S 2012 ACS Nano 6 5941

    [30]

    Gurau M C, Delongchamp D M, Vogel B M, Lin E K, Fischer D A, Sambasivan S, Richter L J 2007 Langmuir 2 834

    [31]

    Morin C, Ikeura-Sekiguchi H, Tyliszczak T, Cornelius R, Brash J L, Hitchcock A P, Scholl A, Nolting F, Appel G, Winesett 2001 J. Electron Spectrosc. Relat. Phenom. 121 203

    [32]

    Zhang X H, Berry B C, Yager K G, Kim S, Jones R L, Satija S, Pickel D L, Douglas J F, Karim A 2008 ACS Nano 2 2331

    [33]

    Zhang X H, Douglas J F, Satija S, Karim A 2015 RSC Adv. 5 32307

    [34]

    Schmidt-Rohr K, Chen Q 2008 Nat. Mater. 7 75

    [35]

    Jones R L, Kumar S K, Ho D L, Briber R M, Russell T P 1999 Nature 400 146

    [36]

    Muller-Buschbaum P, Gutmann J S, Cubitt R, Petry W 2004 Phys. B 350 207

    [37]

    Tanaka M, Sackmann E 2005 Nature 437 656

    [38]

    Parnell A J, Dunbar A D F, Pearson A J, Staniec P A, Dennison A J C, Hamamatsu H, Skoda M W A, Lidzey D G, Jones R A L 2010 Adv. Mater. 22 2444

    [39]

    Kajiyama T, Tanaka K, Satomi N, Takahara A 1998 Macromolecules 31 5150

    [40]

    Hammerschmidt J A, Gladfelter W L, Haugstad G 1999 Macromolecules 32 3360

    [41]

    Tsui O K C, Wang X P, Ho J Y L, Ng T K, Xiao X 2000 Macromolecules 33 4198

    [42]

    Fryer D S, Peters R D, Kim E J, Tomaszewski J E, de Pablo J J, Nealey P F, White C C, Wu W L 2001 Macromolecules 34 5627

    [43]

    Fryer D S, Nealey P F, de Pablo J J 2000 Macromolecules 33 6439

    [44]

    Kawana S, Jones R A L 2001 Phys. Rev. E 63 021501

    [45]

    Mattsson J, Forrest J A, Borjesson L 2000 Phys. Rev. E 62 5187

    [46]

    Cheng W, Sainidou R, Burgardt P, Stefanou N, Kiyanova A, Efremov M, Fytas G, Nealey P F 2007 Macromolecules 40 7283

    [47]

    Hartschuh R, Ding Y, Roh J H, Kisliuk A, Sokolov A P, Soles C L, Jones R L, Hu T J, Wu W L, Mahorowala A P 2004 J. Polym. Sci., Part B: Polym. Phys. 42 1106

    [48]

    Kwak G, Fukao S, Fujiki M, Sakaguchi T, Masuda T 2006 Chem. Mater. 18 2081

    [49]

    Anastasiadis S H, Karatasos K, Vlachos G, Manias E, Giannelis E P 2000 Phys. Rev. Lett. 84 915

    [50]

    Rajendran S, Sivakumar M, Subadevi R 2004 Mater. Lett. 58 641

    [51]

    Tress M, Erber M, Mapesa E U, Huth H, Muller J, Serghei A, Schick C, Eichhorn K J, Volt B, Kremer F 2010 Macromolecules 43 9937

    [52]

    Flier B M, Baier M C, Huber J, Mullen K, Mecking S, Zumbusch A, Woll D 2012 J. Am. Chem. Soc. 134 480

    [53]

    Yung P K, Mckenna G B, Simon S L 2006 J. Polym. Sci., Part B: Polym. Phys. 44 3518

    [54]

    Efremov M Y, Olson E A, Zhang M, Zhang Z, Allen L H 2003 Phys. Rev. Lett. 91 085703

    [55]

    Madkour S, Yin H, Fullbrandt M, Schonhals A 2015 Soft Matter 11 7942

    [56]

    Glor E C, Composto R J, Fakhraai Z 2015 Macromolecules 48 6682

    [57]

    Zhang X, Lacerda S H, Yager K G, Berry B C, Douglas J F, Jones R L, Karim A 2009 ACS Nano 3 2115

    [58]

    Jinnai H, Kajihara T, Watashiba H, Nishikawa Y, Spontak R J 2001 Phys. Rev. E 64 010803

    [59]

    Park H W, Jung J, Chang T, Matsunaga K, Jinnai H 2009 J. Am. Chem. Soc. 131 46

    [60]

    Niihara K, Sugimori H, Matsuwaki U, Hirato F, Morita H, Doi M, Masunaga H, Sasaki S, Jinnai H 2008 Macromolecules 41 9318

    [61]

    Brinkmann M, Rannou P 2009 Macromolecules 42 1125

    [62]

    Salammal S T, Mikayelyan E, Grigorian S, Pietsch U, Koenen N, Scherf U 2012 Macromolecules 45 5575

    [63]

    Drummy L F, Yang J, Martin D C 2004 Ultramicroscopy 99 247

    [64]

    Donald A M, He C B, Royall C P, Sferrazza M, Stelmashenko N A, Thiel B L 2000 Colloids Surf. A 174 37

    [65]

    Marjanski M, Srinivasarao M, Mirau P A 1998 Solid State Nucl. Magn. Reson. 12 113

    [66]

    Fukushima T, Kimura H, Shimahara Y, Kaji H 2011 Appl. Phys.Lett. 99 223301

  • [1] Lu Jing-Yu, Ke Cheng-Zhi, Gong Zheng-Liang, Li De-Ping, Ci Li-Jie, Zhang Li, Zhang Qiao-Bao. Application of in-situ characterization techniques in all-solid-state lithium batteries. Acta Physica Sinica, 2021, 70(19): 198102. doi: 10.7498/aps.70.20210531
    [2] Zhang Nian, Ren Guo-Xi, Zhang Hui, Zhou Deng, Liu Xiao-Song. Research progress of interface problems and optimization of garnet-type solid electrolyte. Acta Physica Sinica, 2020, 69(22): 228806. doi: 10.7498/aps.69.20201533
    [3] Li Ling-Dong, Ye An-Na, Zhou Sheng-Lin, Zhang Xiao-Hua, Yang Zhao-Hui. Confinement effect of carbon nanotubes on the chain mobility of conjugated polymer poly(9,9-dioctylfluorenyl-2,7-diyl). Acta Physica Sinica, 2019, 68(2): 026402. doi: 10.7498/aps.68.20182008
    [4] Zhang Bao-Bao, Zhang Cheng-Yun, Zhang Zheng-Long, Zheng Hai-Rong. Surface plasmon mediated chemical reaction. Acta Physica Sinica, 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [5] Li Jie-Jie, Lu Bin-Bin, Xian Yue-Hui, Hu Guo-Ming, Xia Re. Characterization of nanoporous silver mechanical properties by molecular dynamics simulation. Acta Physica Sinica, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [6] Hua Yun-Feng, Zhang Dong, Zhang Lin-Xi. Ordered structures of nanorods induced by the helixes of semiflexible polymer chains. Acta Physica Sinica, 2015, 64(8): 088201. doi: 10.7498/aps.64.088201
    [7] Zheng Bo-Yu, Dong Hui-Long, Chen Fei-Fan. Characterization of thermal conductivity for GNR based on nonequilibrium molecular dynamics simulation combined with quantum correction. Acta Physica Sinica, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [8] Lu Nai-Yan, Weng Yu-Yan. Pattern transfer and molecular chain orientation modulation by soft template during the nanoimprint lithography. Acta Physica Sinica, 2014, 63(22): 228104. doi: 10.7498/aps.63.228104
    [9] Liu Ning, Zhang Xin-Ping, Dou Fei. Heterojunction structure forming in the polymer film doped with small-molecule organic semiconductors. Acta Physica Sinica, 2012, 61(2): 027201. doi: 10.7498/aps.61.027201
    [10] Zhang Hong-Yu, Zhang Shao-Hua, Liang He, Liu Yu-Hong, Luo Jian-Bin. Molecular alignment of nano-thin film using Raman spectroscopy. Acta Physica Sinica, 2011, 60(9): 098109. doi: 10.7498/aps.60.098109
    [11] Wen Xiao-Hui, Zhang Lin-Xi. A knotted polymer chain passing through a pore. Acta Physica Sinica, 2010, 59(10): 7404-7409. doi: 10.7498/aps.59.7404
    [12] Wang Qiao-Zhan, Yu Run-Sheng, Qin Xiu-Bo, Li Yu-Xiao, Wang Bao-Yi, Jia Quan-Jie. Pore structure determination of mesoporous SiO2 thin films by slow positron annihilation spectroscopy. Acta Physica Sinica, 2009, 58(12): 8478-8483. doi: 10.7498/aps.58.8478
    [13] Zhang Jia, Wang Yu-Hua, Wang Dan. Synthesis and luminescence properties of YPO4:Eu3+ nanophosphor. Acta Physica Sinica, 2009, 58(10): 7267-7271. doi: 10.7498/aps.58.7267
    [14] Xiao Si-Guo, Yang Xiao-Liang, Ding Jian-Wen, Yan Xiao-Hong. Size dependent luminescence properties of Er3+ doped nano-crystalline Y2O3. Acta Physica Sinica, 2009, 58(1): 165-173. doi: 10.7498/aps.58.165
    [15] Ji Qing, Qiao Bao-Fu, Zhao De-Lu. A theory of polymer solubility parameter. Acta Physica Sinica, 2007, 56(3): 1815-1818. doi: 10.7498/aps.56.1815
    [16] Zhang Yun, Zhang Bo-Ping, Jiao Li-Shi, Zhang Hai-Long, Li Xiang-Yang. Preparation and characterization of Au/SiO2 nano-composite multilayer films. Acta Physica Sinica, 2006, 55(7): 3730-3735. doi: 10.7498/aps.55.3730
    [17] Guo Kun-Kun, Qiu Feng, Zhang Hong-Dong, Yang Yu-Liang. Polymer anchored fluid membrane. Acta Physica Sinica, 2006, 55(1): 155-161. doi: 10.7498/aps.55.155
    [18] Feng Wen-Ran, Yan Dian-Ran, He Ji-Ning, Chen Guang-Liang, Gu Wei-Chao, Zhang Gu-Ling, Liu Chi-Zi, Yang Si-Ze. Hardness and microstructure of the nanocrystallined TiN coating by reactive plasma spray. Acta Physica Sinica, 2005, 54(5): 2399-2402. doi: 10.7498/aps.54.2399
    [19] Yu Bai-Lin, Tang Xin-Feng, Qi Qiong, Zhang Qing-Jie. Preparation and thermal transport properties of CoSb3 nano-compounds. Acta Physica Sinica, 2004, 53(9): 3130-3135. doi: 10.7498/aps.53.3130
    [20] SUN XIN, CHEN HONG-YI, WU CHANG-QIN, FU RONG-TANG, FU ROU-LI. MATRIX ELEMENTS OF ELECTRON INTERACTION IN POLYMER. Acta Physica Sinica, 1991, 40(1): 102-108. doi: 10.7498/aps.40.102
Metrics
  • Abstract views:  6550
  • PDF Downloads:  579
  • Cited By: 0
Publishing process
  • Received Date:  20 May 2016
  • Accepted Date:  06 July 2016
  • Published Online:  05 September 2016

/

返回文章
返回