Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The applications of the wormlike chain model on polymer physics

Jiang Ying Chen Jeff Z. Y.

Citation:

The applications of the wormlike chain model on polymer physics

Jiang Ying, Chen Jeff Z. Y.
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The continuum version of the wormlike chain model (WLC), which was initially developed by Saito, Takahashi and Yunoki in 1967, is particularly suitable for description of polymer conformational properties affected by the chain rigidity. The WLC model is capable of covering an extensive range of chain rigidity, from the flexible chains to the rigid chains, by tuning the persistence length directly. It is widely accepted as a coarse-grained model that can be used to capture the physical properties, such as conformation and structures, of a larger class of real polymers than the Gaussian chain (GSC). Recently, the WLC model attracts increasing interests because of its advantages in studying a variety of polymeric systems, including liquid crystalline polymers and conjugated polymers. This review article focuses on applications of the WLC model, incorporated in the framework of self-consistent field theory, which is an effective method in theoretical exploration of phase separation in polymer systems. The article also pays particular attention to the developments of the numerical schemes to solve the modified diffusion equation governing the probability distribution of polymers. In addition, we summarize recent applications of the self-consistent field theories based on WLC model in the following three areas: phase transitions in liquid-crystalline polymers; the influence of surface curvature on polymeric systems involving the chain orientation effects; self-assembly of wormlike block copolymers. These studies are beyond the scope of self-consistent field theories based on a GSC model, which have been utilized in a large number of theoretical studies in recent years. Finally, we propose the perspectives of theoretical developments in field-theory simulations based on the WLC model for future work. In the polymer literature, it is generally appreciated that chain-rigidity is an important factor that influences the properties of structural stabilities on the meso-scale. The theoretical studies indentify the key physical mechanisms that play crucial roles in many experimental systems with attractively promising applications in practice, for systems such as liquid crystalline polymers and organic solar cell based on the conjugated polymers.
      Corresponding author: Jiang Ying, jiangy.uwaterloo@gmail.com;jeffchen@uwaterloo.ca ; Chen Jeff Z. Y., jiangy.uwaterloo@gmail.com;jeffchen@uwaterloo.ca
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21204067, 21574006), the Fundamental Research Funds for the Central Universities, China and Natural Sciences and Engineering Research Council (Canada).
    [1]

    Rubinstein M, Colby R H 2003 Polymer Physics (Oxford University Press)

    [2]

    Doi M, Edwards S F 1986 The Theory of Polymer Dynamics (Clarendon Press)

    [3]

    Yamakawa H 1997 Helical Wormlike Chains in Polymer Solutions (New York: Springer-Verlag)

    [4]

    de Gennes P G, Prost J 1993 The Physics of Liquid Crystals (New York: Oxford University Press)

    [5]

    Kratky O, Porod G 1949 Recl. Trav. Chim. 68 1106

    [6]

    Saito N, Takahashi K, Yunoki Y 1967 J. Phys. Soc. Jpn. 22 219

    [7]

    Tagamil Y 1969 Macromolecules 2 8

    [8]

    Harris R A, Hearst J E 1966 J. Chem. Phys. 44 2595

    [9]

    Freed K F 1972 Adv. Chem. Phys. 22 1

    [10]

    Fredrickson G H, 2006 The Equilibrium Theory of Inhomogeneous Polymer (Oxford: Clarendon Press)

    [11]

    Vroege G J, Odijk T 1988 Macromolecules 21 2848

    [12]

    Chen Z Y 1993 Macromolecules 26 3419

    [13]

    Chen J Z Y, Sullivan D E, Yuan X Q 2007 Macromolecules 40 1187

    [14]

    Morse D C, Fredrickson G H 1994 Phys. Rev. Lett. 73 3235

    [15]

    Schmid F, Mller M 1995 Macromolecules 28 863

    [16]

    Dchs D, Sullivan D E 2002 J. Phys.: Condens. Matter 14 12189

    [17]

    Ganesan V, Khounlavong L, Pryamitsyn V 2008 Phys. Rev. E 78 051804

    [18]

    Song W D, Tang P, Zhang H D, Yang Y L, Shi A C 2009 Macromolecules 42 6300

    [19]

    Gao J, Song W D, Tang P, Yang Y L 2011 Soft Matter 7 5208

    [20]

    Gao J, Tang P, Yang Y L. 2013 Soft Matter 9 69

    [21]

    Jiang Y, Chen J Z Y 2013 Phys. Rev. Lett. 110 138305

    [22]

    Jiang Y, Chen J Z Y 2013 Phys. Rev. E 88 042603

    [23]

    Cui S M, Akcakir O, Chen Z Y 1995 Phys. Rev. E 51 4548

    [24]

    Matsen M W 1996 J. Chem. Phys. 104 7758

    [25]

    Deng M G, Jiang Y, Liang H J, Chen J Z Y 2010 Macromolecules 43 3455

    [26]

    Jiang Y, Chen J Z Y 2010 Macromolecules 43 10668

    [27]

    Jiang Y, Zhang W Y, Chen J Z Y 2011 Phys. Rev. E 84 041803

    [28]

    Song W D, Tang P, Qiu F, Yang Y L, Shi A C 2011 Soft Matter 7 929

    [29]

    Liu A J, Fredrickson G H 1993 Macromolecules 26 2817

    [30]

    Drovetsky B Y, Liu A J, Mak C H 1999 J. Chem. Phys. 111 4334

    [31]

    Puech N, Grelet E, Poulin P, Blanc C, van der Schoot P 2010 Phys. Rev. E 82 020702

    [32]

    Yang G, Tang P, Yang Y 2012 Macromolecules 45 3590

    [33]

    Shah M, Pryamitsyn V, Ganesan V 2008 Macromolecules 41 218

    [34]

    Li S, Jiang Y, Chen J Z Y 2014 Soft Matter 10 8932

    [35]

    Netz R R, Andelman D 2003 Phys. Rep. 380 1

    [36]

    de Gennes P G 1969 Rep. Prog. Phys. 32 187

    [37]

    Semenov A N 2002 Eur. Phys. J. E 9 353

    [38]

    Deng M G, Jiang Y, Liang H J, Chen J Z Y 2010 J. Chem. Phys. 133 034902

    [39]

    Ivanov V A, Martemyanoova J A, Mller M, Paul W, Binder K 2009 J. Phys. Chem. B 113 3653

    [40]

    Netz R R, Joanny J F 1999 Macromolecules 32 9026

    [41]

    Chen Y L, Schweizer K S 2002 J. Chem. Phys. 117 1351

    [42]

    Cao D. P, Jiang T, Wu J. Z. 2006 J. Chem. Phys. 124 164904

    [43]

    Daoulas K, Therodorou D N, Harmandaris V A, Karayiannis N, Mavrantzas V G 2005 Macromolecules 38 7134

    [44]

    Lavrentovich O D 2014 Soft Matter 10 1264

    [45]

    Bonthuis D J, Meyer C, Stein D, Dekker C 2008 Phys. Rev. Lett. 101 108303

    [46]

    Kyubong J, Dhingra D M, Odijk T, de Pablo J J, Graham M D, Runnheim R, Forrest D, Schwartz D C 2007 Proc. Natl. Acad. Sci. U.S.A. 104 2673

    [47]

    Marenduzzo D, Orlandini E, Stasiak A, Sumner D W, Tubiana L, Micheletti C 2009 Proc. Natl. Acad. Sci. U.S.A. 106 22269

    [48]

    Reisner W, Pedersen J N, Austin R H 2012 Rep. Prog. Phys. 75 106601

    [49]

    de Gennes P G 1979 Scaling Concepts in Polymer Physics (Ithaca, NY: Cornell University Press)

    [50]

    Odijk T 1983 Macromolecules 16 1340

    [51]

    Burkhardt T W, Yang Y, Gompper G 2010 Phys. Rev. E 82 041801

    [52]

    Chen J Z Y, Sullivan D E 2006 Macromolecules 39 7769

    [53]

    Odijk T 2008 Phys. Rev. E 77 060901

    [54]

    Dai L, Ng S Y, Doyle P S, van der Maarel J 2012 ACS Macro Lett 1 1046

    [55]

    Wang Y, Tree D R, Dorfman K D 2011 Macromolecules 44 6594

    [56]

    Tree D R, Wang Y, Dorfman K D 2013 Phys. Rev. Lett. 110 208103

    [57]

    Dai L, van der Maarel J, Doyle P S 2014 Macromolecules 47 2445

    [58]

    Forrey C, Muthukumar M 2006 Biophys. J. 91 25

    [59]

    LaMarque J C, Le T L, Harvey S C 2004 Biopolymers 73 348

    [60]

    Fathizadeh A, Heidari M, Mossallam B E, Ejtehadi M R 2013 J. Chem. Phys. 139 044912

    [61]

    Petrov A S, Boz M B, Harvey S C 2007 J. Struct. Biol. 160 241

    [62]

    Ivanov V A, Rodionova A S, Martemyanova J A, Stukan M R, Mller M, Paul W, Binder K 2013 J. Chem. Phys. 138 234903

    [63]

    Liang Q, Li J F, Zhang P W, Chen J Z Y 2013 J. Chem. Phys. 138 244910

    [64]

    Chen J Z Y 2013 Macromolecules 46 9837

    [65]

    Gao J, Tang P, Yang Y L, Chen J Z Y 2014 Soft Matter 10 4674

    [66]

    Khanna V, Cochran E W, Hexemer A, Stein G E, Fredrickson G H, Kramer E J, Li X, Wang J, Hahn S F 2006 Macromolecules 39 9346

    [67]

    Yang G, Tang P, Yang Y L, Wang Q 2010 J. Phys. Chem. B 114 14897

    [68]

    Semenov A N, Vasilenko S V 1986 Sov. Phys. JETP 63 70

    [69]

    Semenov A N 1991 Molecular Crystals and Liquid Crystals 209 191

    [70]

    Williams D R M, Fredrickson G H 1992 Macromolecules 25 3561

    [71]

    Matsen M W, Barrett C 1998 J. Chem. Phys. 109 4108

    [72]

    Holyst R, Schick M 1992 J. Chem. Phys. 96 730

    [73]

    Singh C, Goulian M, Liu A. J, Fredrickson G H 1994 Macromolecules 27 2974

    [74]

    Reenders M, ten Brinke G 2002 Macromolecules 35 3266

    [75]

    Pryamitsyn V, Ganesan V 2004 J. Chem. Phys. 120 5824

    [76]

    Chen J Z, Zhang C X, Sun Z Y, Zheng Y S, An L J 2006 J. Chem. Phys. 124 104907

    [77]

    Kriksin Y A, Khalatur P G 2012 Macromolecular Theory and Simulations 21 382

    [78]

    Zhang X H, Jiang Y, Miao B, Chen Y L, Yan D D, Chen J Z Y 2014 Soft Matter 10 5405

    [79]

    Leibler L 1980 Macromolecules 13 1602

    [80]

    Jiang Y, Zhang X H, Miao B, Yan D D, Chen J Z Y 2016 Soft Matter 12 2481

  • [1]

    Rubinstein M, Colby R H 2003 Polymer Physics (Oxford University Press)

    [2]

    Doi M, Edwards S F 1986 The Theory of Polymer Dynamics (Clarendon Press)

    [3]

    Yamakawa H 1997 Helical Wormlike Chains in Polymer Solutions (New York: Springer-Verlag)

    [4]

    de Gennes P G, Prost J 1993 The Physics of Liquid Crystals (New York: Oxford University Press)

    [5]

    Kratky O, Porod G 1949 Recl. Trav. Chim. 68 1106

    [6]

    Saito N, Takahashi K, Yunoki Y 1967 J. Phys. Soc. Jpn. 22 219

    [7]

    Tagamil Y 1969 Macromolecules 2 8

    [8]

    Harris R A, Hearst J E 1966 J. Chem. Phys. 44 2595

    [9]

    Freed K F 1972 Adv. Chem. Phys. 22 1

    [10]

    Fredrickson G H, 2006 The Equilibrium Theory of Inhomogeneous Polymer (Oxford: Clarendon Press)

    [11]

    Vroege G J, Odijk T 1988 Macromolecules 21 2848

    [12]

    Chen Z Y 1993 Macromolecules 26 3419

    [13]

    Chen J Z Y, Sullivan D E, Yuan X Q 2007 Macromolecules 40 1187

    [14]

    Morse D C, Fredrickson G H 1994 Phys. Rev. Lett. 73 3235

    [15]

    Schmid F, Mller M 1995 Macromolecules 28 863

    [16]

    Dchs D, Sullivan D E 2002 J. Phys.: Condens. Matter 14 12189

    [17]

    Ganesan V, Khounlavong L, Pryamitsyn V 2008 Phys. Rev. E 78 051804

    [18]

    Song W D, Tang P, Zhang H D, Yang Y L, Shi A C 2009 Macromolecules 42 6300

    [19]

    Gao J, Song W D, Tang P, Yang Y L 2011 Soft Matter 7 5208

    [20]

    Gao J, Tang P, Yang Y L. 2013 Soft Matter 9 69

    [21]

    Jiang Y, Chen J Z Y 2013 Phys. Rev. Lett. 110 138305

    [22]

    Jiang Y, Chen J Z Y 2013 Phys. Rev. E 88 042603

    [23]

    Cui S M, Akcakir O, Chen Z Y 1995 Phys. Rev. E 51 4548

    [24]

    Matsen M W 1996 J. Chem. Phys. 104 7758

    [25]

    Deng M G, Jiang Y, Liang H J, Chen J Z Y 2010 Macromolecules 43 3455

    [26]

    Jiang Y, Chen J Z Y 2010 Macromolecules 43 10668

    [27]

    Jiang Y, Zhang W Y, Chen J Z Y 2011 Phys. Rev. E 84 041803

    [28]

    Song W D, Tang P, Qiu F, Yang Y L, Shi A C 2011 Soft Matter 7 929

    [29]

    Liu A J, Fredrickson G H 1993 Macromolecules 26 2817

    [30]

    Drovetsky B Y, Liu A J, Mak C H 1999 J. Chem. Phys. 111 4334

    [31]

    Puech N, Grelet E, Poulin P, Blanc C, van der Schoot P 2010 Phys. Rev. E 82 020702

    [32]

    Yang G, Tang P, Yang Y 2012 Macromolecules 45 3590

    [33]

    Shah M, Pryamitsyn V, Ganesan V 2008 Macromolecules 41 218

    [34]

    Li S, Jiang Y, Chen J Z Y 2014 Soft Matter 10 8932

    [35]

    Netz R R, Andelman D 2003 Phys. Rep. 380 1

    [36]

    de Gennes P G 1969 Rep. Prog. Phys. 32 187

    [37]

    Semenov A N 2002 Eur. Phys. J. E 9 353

    [38]

    Deng M G, Jiang Y, Liang H J, Chen J Z Y 2010 J. Chem. Phys. 133 034902

    [39]

    Ivanov V A, Martemyanoova J A, Mller M, Paul W, Binder K 2009 J. Phys. Chem. B 113 3653

    [40]

    Netz R R, Joanny J F 1999 Macromolecules 32 9026

    [41]

    Chen Y L, Schweizer K S 2002 J. Chem. Phys. 117 1351

    [42]

    Cao D. P, Jiang T, Wu J. Z. 2006 J. Chem. Phys. 124 164904

    [43]

    Daoulas K, Therodorou D N, Harmandaris V A, Karayiannis N, Mavrantzas V G 2005 Macromolecules 38 7134

    [44]

    Lavrentovich O D 2014 Soft Matter 10 1264

    [45]

    Bonthuis D J, Meyer C, Stein D, Dekker C 2008 Phys. Rev. Lett. 101 108303

    [46]

    Kyubong J, Dhingra D M, Odijk T, de Pablo J J, Graham M D, Runnheim R, Forrest D, Schwartz D C 2007 Proc. Natl. Acad. Sci. U.S.A. 104 2673

    [47]

    Marenduzzo D, Orlandini E, Stasiak A, Sumner D W, Tubiana L, Micheletti C 2009 Proc. Natl. Acad. Sci. U.S.A. 106 22269

    [48]

    Reisner W, Pedersen J N, Austin R H 2012 Rep. Prog. Phys. 75 106601

    [49]

    de Gennes P G 1979 Scaling Concepts in Polymer Physics (Ithaca, NY: Cornell University Press)

    [50]

    Odijk T 1983 Macromolecules 16 1340

    [51]

    Burkhardt T W, Yang Y, Gompper G 2010 Phys. Rev. E 82 041801

    [52]

    Chen J Z Y, Sullivan D E 2006 Macromolecules 39 7769

    [53]

    Odijk T 2008 Phys. Rev. E 77 060901

    [54]

    Dai L, Ng S Y, Doyle P S, van der Maarel J 2012 ACS Macro Lett 1 1046

    [55]

    Wang Y, Tree D R, Dorfman K D 2011 Macromolecules 44 6594

    [56]

    Tree D R, Wang Y, Dorfman K D 2013 Phys. Rev. Lett. 110 208103

    [57]

    Dai L, van der Maarel J, Doyle P S 2014 Macromolecules 47 2445

    [58]

    Forrey C, Muthukumar M 2006 Biophys. J. 91 25

    [59]

    LaMarque J C, Le T L, Harvey S C 2004 Biopolymers 73 348

    [60]

    Fathizadeh A, Heidari M, Mossallam B E, Ejtehadi M R 2013 J. Chem. Phys. 139 044912

    [61]

    Petrov A S, Boz M B, Harvey S C 2007 J. Struct. Biol. 160 241

    [62]

    Ivanov V A, Rodionova A S, Martemyanova J A, Stukan M R, Mller M, Paul W, Binder K 2013 J. Chem. Phys. 138 234903

    [63]

    Liang Q, Li J F, Zhang P W, Chen J Z Y 2013 J. Chem. Phys. 138 244910

    [64]

    Chen J Z Y 2013 Macromolecules 46 9837

    [65]

    Gao J, Tang P, Yang Y L, Chen J Z Y 2014 Soft Matter 10 4674

    [66]

    Khanna V, Cochran E W, Hexemer A, Stein G E, Fredrickson G H, Kramer E J, Li X, Wang J, Hahn S F 2006 Macromolecules 39 9346

    [67]

    Yang G, Tang P, Yang Y L, Wang Q 2010 J. Phys. Chem. B 114 14897

    [68]

    Semenov A N, Vasilenko S V 1986 Sov. Phys. JETP 63 70

    [69]

    Semenov A N 1991 Molecular Crystals and Liquid Crystals 209 191

    [70]

    Williams D R M, Fredrickson G H 1992 Macromolecules 25 3561

    [71]

    Matsen M W, Barrett C 1998 J. Chem. Phys. 109 4108

    [72]

    Holyst R, Schick M 1992 J. Chem. Phys. 96 730

    [73]

    Singh C, Goulian M, Liu A. J, Fredrickson G H 1994 Macromolecules 27 2974

    [74]

    Reenders M, ten Brinke G 2002 Macromolecules 35 3266

    [75]

    Pryamitsyn V, Ganesan V 2004 J. Chem. Phys. 120 5824

    [76]

    Chen J Z, Zhang C X, Sun Z Y, Zheng Y S, An L J 2006 J. Chem. Phys. 124 104907

    [77]

    Kriksin Y A, Khalatur P G 2012 Macromolecular Theory and Simulations 21 382

    [78]

    Zhang X H, Jiang Y, Miao B, Chen Y L, Yan D D, Chen J Z Y 2014 Soft Matter 10 5405

    [79]

    Leibler L 1980 Macromolecules 13 1602

    [80]

    Jiang Y, Zhang X H, Miao B, Yan D D, Chen J Z Y 2016 Soft Matter 12 2481

  • [1] He Hua-Dan, Zhong Qi-Chao, Xie Wen-Jun. Evaporation and phase separation of acoustically levitated aqueous two-phase-system drops. Acta Physica Sinica, 2024, 73(3): 034304. doi: 10.7498/aps.73.20230963
    [2] Wang Jing, Jiao Yang, Tian Wen-De, Chen Kang. Phase separation phenomenon in mixed system composed of low- and high-inertia active particles. Acta Physica Sinica, 2023, 72(19): 190501. doi: 10.7498/aps.72.20230792
    [3] Liu Bo-Yang, Song Wen-Tao, Liu Zheng-Hui, Sun Xiao-Juan, Wang Kai-Ming, Wang Ya-Kun, Zhang Chun-Yu, Chen Ke-Bei, Xu Geng-Zhao, Xu Ke, Li Da-Bing. Characterization of phase separation on AlGaN surfaces by in-situ photoluminescence spectroscopy and high spatially resolved surface potential images. Acta Physica Sinica, 2020, 69(12): 127302. doi: 10.7498/aps.69.20200099
    [4] Liang Yi-Ran, Liang Qing. Molecular simulation of interaction between charged nanoparticles and phase-separated biomembranes containning charged lipids. Acta Physica Sinica, 2019, 68(2): 028701. doi: 10.7498/aps.68.20181891
    [5] Duan Hua, Li Jian-Feng, Zhang Hong-Dong. Theoretical simulations of deformation coupling with phase separation of two-component charged vesicles in a two-dimensional plane. Acta Physica Sinica, 2018, 67(3): 038701. doi: 10.7498/aps.67.20171740
    [6] Ji Dan-Dan, Zhang Shao-Guang. Phase separation pattern transition of three-domain vesicles. Acta Physica Sinica, 2018, 67(18): 188701. doi: 10.7498/aps.67.20180828
    [7] Xiang Jun-You, Wang Zhi-Guo, Xu Bao, Sun Yun-Bin, Wu Hong-Ye, Zhao Jian-Jun, Lu Yi. Phase separation of bilayered perovskite manganite (La1-xGdx)4/3Sr5/3Mn2 O7 (x=0, 0.05). Acta Physica Sinica, 2014, 63(15): 157501. doi: 10.7498/aps.63.157501
    [8] Fan Juan-Juan, Yu Xiu-Ling, Liang Xue-Mei. Self-consistent field simulation of hierarchical self-assembly structures from AB/CD block copolymer blends. Acta Physica Sinica, 2013, 62(15): 158105. doi: 10.7498/aps.62.158105
    [9] Ren Qun, Wang Nan, Zhang Li, Wang Jian-Yuan, Zheng Ya-Ping, Yao Wen-Jing. The effects of spinodal decomposition and nucleation on phase separation. Acta Physica Sinica, 2012, 61(19): 196401. doi: 10.7498/aps.61.196401
    [10] Wang Qiang. Charge order and phase separation in Bi0.5Ca0.5Mn1-xCoxO3 system. Acta Physica Sinica, 2010, 59(9): 6569-6574. doi: 10.7498/aps.59.6569
    [11] Li Mei-Li, Fu Xing-Ye, Sun Hong-Ning, Zhao Hong-An, Li Cong, Duan Yong-Ping, Yan Yuan, Sun Min-Hua. Molecular dynamics investigation of the glass transition at high-pressure in the phase separation liquid. Acta Physica Sinica, 2009, 58(8): 5604-5609. doi: 10.7498/aps.58.5604
    [12] Li Mei-Li, Zhang Di, Sun Hong-Ning, Fu Xing-Ye, Yao Xiu-Wei, Li Cong, Duan Yong-Ping, Yan Yuan, Mu Hong-Chen, Sun Min-Hua. Molecular dynamics study of the phase separation and diffusion in Lennard-Jones binary liquid. Acta Physica Sinica, 2008, 57(11): 7157-7163. doi: 10.7498/aps.57.7157
    [13] Liu Rui, Li Yin-Chang, Hou Mei-Ying. Phase separation in a three-dimensional granular gas system. Acta Physica Sinica, 2008, 57(8): 4660-4666. doi: 10.7498/aps.57.4660
    [14] Li Ming, Zhu Yue-Jin. Phase diagram of diblock copolymer confined in a cylindrical nanopore with polymer-grafted surface. Acta Physica Sinica, 2008, 57(12): 7555-7564. doi: 10.7498/aps.57.7555
    [15] Zhai Wei, Wang Nan, Wei Bing-Bo. Direct observation of phase separation in binary monotectic solution. Acta Physica Sinica, 2007, 56(4): 2353-2358. doi: 10.7498/aps.56.2353
    [16] Jiang Zhong-Ying, Yu Wei-Zhong, Huang Yan-Jun, Xia Yuan-Fu, Ma Shu-Xin. Phase behavior and thermal dynamic properties of free volume on SMMA/SMA copolymer blend studied by PALS method. Acta Physica Sinica, 2006, 55(6): 3136-3140. doi: 10.7498/aps.55.3136
    [17] Jiang Zhong-Ying, Yu Wei-Zhong, Xia Yuan-Fu. Study on temperature dependence and e+ irradiation time dependence of positron annihilation parameters about SEBS triblocks copolymer. Acta Physica Sinica, 2005, 54(7): 3434-3438. doi: 10.7498/aps.54.3434
    [18] Zhang Hua-Li, Liu Wei, Li Dong-Cai, Wu Xiu-Sheng, Chen Chu-Sheng. Phase separation in La2NiO4+δ studied by lowfrequency internal friction technique. Acta Physica Sinica, 2004, 53(11): 3834-3838. doi: 10.7498/aps.53.3834
    [19] Feng Wen-Qiang, Zhu Yue-Jin. The driven-effect of external fluctuation on phase separation of binary mixtures. Acta Physica Sinica, 2004, 53(11): 3690-3694. doi: 10.7498/aps.53.3690
    [20] Zhang Bin, Liu Yan-Jun, Xu Ke Shu, Jia Yu. Optimization of diffraction properties for holographic polymer dispersed liquid crystal. Acta Physica Sinica, 2003, 52(1): 91-95. doi: 10.7498/aps.52.91
Metrics
  • Abstract views:  7208
  • PDF Downloads:  446
  • Cited By: 0
Publishing process
  • Received Date:  03 June 2016
  • Accepted Date:  08 July 2016
  • Published Online:  05 September 2016

/

返回文章
返回