Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dual in-plane-gate coupled IZO thin film transistor based on capacitive coupling effect in KH550-GO solid electrolyte

Guo Li-Qiang Wen Juan Cheng Guang-Gui Yuan Ning-Yi Ding Jian-Ning

Citation:

Dual in-plane-gate coupled IZO thin film transistor based on capacitive coupling effect in KH550-GO solid electrolyte

Guo Li-Qiang, Wen Juan, Cheng Guang-Gui, Yuan Ning-Yi, Ding Jian-Ning
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Low-voltage electric-double-layer oxide-based thin-film transistors are of great prospect and investigative value in the fields of micro multi-state memory devices, detectors, electrochemical sensors, and biological synapses simulation, and so on. In addition, low-voltage electric-double-layer oxide-based thin-film transistors have increasingly attracted attention among researchers due to the characteristics of high mobility, high visible light transmittance and low temperature preparation. Currently, the researches about low-voltage electric-double-layer oxide-based thin-film transistors are broadly divided into two aspects. On the one hand, the researches focus on ZnO as a channel layer, source and drain electrode materials, then gradually develop into In, Sn and Ga oxides as well as complex oxides containing these elements, which has made tremendous progress. On the other hand, the development and research of the gate dielectric materials have received more attention. It is found that by adopting an organic/inorganic proton conductor film as the gate dielectric of low-voltage electric-double-layer oxide-based thin-film transistors, the protons in the gate dielectric will move in the direction away from gate, and finally accumulate on the surface of gate dielectric layer close to the channel layer, with the positive bias applied to the gate. In conclusion, though the researches about low-voltage electricdouble- layer oxide-based thin-film transistors have already made great progress, further explorations and investigations are necessary from its wide applications. Consequently, the development of new material architecture of low-voltage electric-double-layer oxide-based thin-film transistor is one way to achieve this goal. Silane coupling agents (3-triethoxysilylpropyla-mine)-graphene oxide (KH550-GO) solid electrolyte is prepared on plastic substrate by spin coating process. The electrical performances of dual in-plane-gate coupled protonic/electronic hybrid IZO thin film transistor gated by KH550-GO solid electrolyte are further studied. The results indicate that the electric-double-layer capacitance and proton conductivity of KH550-GO solid electrolyte respectively achieve 2.03 F/cm2 and 6.9910-3 S/cm, respectively. Due to high electric-double-layer capacitance and proton conductivity, protonic/electronic hybrid IZO thin film transistor gated by KH550-GO solid electrolyte has lower power consumption (its operation voltage ~2 V). Current on/off ratio of 1.23107 and field-effect mobility of 24.72 cm2/(Vs) are shown in the device. Due to the capacitive coupling effect of KH550-GO solid electrolyte, the device with the stimulus of dual in-plane-gate voltage, can effectively modulate the threshold voltage, the subthreshold swing and the field-effect mobility, and demonstrate AND logic operation successfully. Dual in-plane-gate coupled protonic/electronic hybrid IZO thin film transistors prepared in this paper have potential applications in the field of biosensors and artificial synapses.
      Corresponding author: Wen Juan, wenjuan930924@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51402321), the Research Fund of Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, China (Grant No. SKLPSTKF201503), the Postdoctoral Research Funding Plan of Jiangsu Province, China (Grant No. 1402071B), and the Starting Foundation of Jiangsu University Advanced Talent (Grant No. 14JDG049).
    [1]

    Guo L Q, Wan C J, Zhu L Q, Wan Q 2013 Appl. Phys. Lett. 103 113503

    [2]

    Guo D, Zhou M, Zhang X A, Xu C, Jiang J, Gao F, Wan Q, Li Q H, Wang T H 2013 Anal. Chim. Acta 773 83

    [3]

    Kim K, Chen L C, Truong Q Y, Shen A M, Chen Y 2013 Adv. Mater. 25 1693

    [4]

    Gkoupidenis P, Scaefer N, Strakosas X, Fairfield J A, G G Malliaras 2015 Appl. Phys. Lett. 107 263302

    [5]

    Guo L Q, Yang Y Y, Zhu L Q, Wu G D, Zhou J M 2013 AIP Adv. 3 072110

    [6]

    Fortunato E, Barquinha P, Pimentel A, Goncalves A, Marques A, Martins R, Pereira L 2004 Appl. Phys. Lett. 85 2541

    [7]

    Zhao K S, Xuan R J, Han X, Zhang G M 2012 Acta Phys. Sin. 61 197201 (in Chinese) [赵孔胜, 轩瑞杰, 韩笑, 张耕铭 2012 物理学报 61 197201]

    [8]

    Chong E, Kim S H, Cho E A, Jang G E, Lee S Y 2011 Curr. Appl. Phys. 11 S132

    [9]

    Chen A H, Tao H, Zhang H Z, Liang L Y, Zhang H Z, iang L Y, Liu M Z, Yu Z, Wan Q 2010 Microelectron. Eng. 87 2019

    [10]

    Zhang H Z, Cao H T, Chen A H, Liang L Y, Liu M Z, Yu Z, Wan Q 2010 Solid State Electrn. 54 479

    [11]

    Lee S, Park H, Paine D C 2012 Thin Solid Films 520 3769

    [12]

    Kergoat L, Herlogsson L, Braga D, Piro B, Pham M C, Crispin X, Berggren M, Horowitz G 2010 Adv. Mater. 22 2565

    [13]

    Zhou B, Sun J, Han X, Jiang J, Wan Q 2011 IEEE Electron. Dev. Lett. 32 1549

    [14]

    Matthew J P, Frisbie C D 2007 J. Am. Chem. Soc. 129 6599

    [15]

    Herlogsson L, Crispin X, Robinson N D, Sandberg M, Hagel O J, Gustafsson G, Berggren M 2007 Adv. Mater. 19 97

    [16]

    Kim S H, Yang S Y, Shin K, Jeon H, Lee J W, Hong K P, Park C E 2006 Appl. Phys. Lett. 89 183516

    [17]

    Larsson O, Said E, Burggren M, Crispin X 2009 Adv. Funct. Mater. 19 3334

    [18]

    Zhu D M, Men C L, Cao M, Wu G D 2013 Acta Phys. Sin. 62 117305 (in Chinese) [朱德明, 门传玲, 曹敏, 吴国栋 2013 物理学报 62 117305]

    [19]

    Wee G, Larsson O, Srinivasan M, Berggren M, Crispin X, Mhaisalkar S 2010 Adv. Funct. Mater. 20 4344

    [20]

    Jiang J, Sun J, Dou W, Zhou B, Wan Q 2011 Appl. Phys. Lett. 99 193502

    [21]

    Guo L Q, Huang Y K, Shi Y Y, Cheng G G, Ding J N 2015 J. Phys. D: Appl. Phys. 48 285103

    [22]

    Liu S, Tian J Q, Wang L, Luo Y L, Lua W B, Sun X B 2011 Biosens. Bioelectron. 26 4491

  • [1]

    Guo L Q, Wan C J, Zhu L Q, Wan Q 2013 Appl. Phys. Lett. 103 113503

    [2]

    Guo D, Zhou M, Zhang X A, Xu C, Jiang J, Gao F, Wan Q, Li Q H, Wang T H 2013 Anal. Chim. Acta 773 83

    [3]

    Kim K, Chen L C, Truong Q Y, Shen A M, Chen Y 2013 Adv. Mater. 25 1693

    [4]

    Gkoupidenis P, Scaefer N, Strakosas X, Fairfield J A, G G Malliaras 2015 Appl. Phys. Lett. 107 263302

    [5]

    Guo L Q, Yang Y Y, Zhu L Q, Wu G D, Zhou J M 2013 AIP Adv. 3 072110

    [6]

    Fortunato E, Barquinha P, Pimentel A, Goncalves A, Marques A, Martins R, Pereira L 2004 Appl. Phys. Lett. 85 2541

    [7]

    Zhao K S, Xuan R J, Han X, Zhang G M 2012 Acta Phys. Sin. 61 197201 (in Chinese) [赵孔胜, 轩瑞杰, 韩笑, 张耕铭 2012 物理学报 61 197201]

    [8]

    Chong E, Kim S H, Cho E A, Jang G E, Lee S Y 2011 Curr. Appl. Phys. 11 S132

    [9]

    Chen A H, Tao H, Zhang H Z, Liang L Y, Zhang H Z, iang L Y, Liu M Z, Yu Z, Wan Q 2010 Microelectron. Eng. 87 2019

    [10]

    Zhang H Z, Cao H T, Chen A H, Liang L Y, Liu M Z, Yu Z, Wan Q 2010 Solid State Electrn. 54 479

    [11]

    Lee S, Park H, Paine D C 2012 Thin Solid Films 520 3769

    [12]

    Kergoat L, Herlogsson L, Braga D, Piro B, Pham M C, Crispin X, Berggren M, Horowitz G 2010 Adv. Mater. 22 2565

    [13]

    Zhou B, Sun J, Han X, Jiang J, Wan Q 2011 IEEE Electron. Dev. Lett. 32 1549

    [14]

    Matthew J P, Frisbie C D 2007 J. Am. Chem. Soc. 129 6599

    [15]

    Herlogsson L, Crispin X, Robinson N D, Sandberg M, Hagel O J, Gustafsson G, Berggren M 2007 Adv. Mater. 19 97

    [16]

    Kim S H, Yang S Y, Shin K, Jeon H, Lee J W, Hong K P, Park C E 2006 Appl. Phys. Lett. 89 183516

    [17]

    Larsson O, Said E, Burggren M, Crispin X 2009 Adv. Funct. Mater. 19 3334

    [18]

    Zhu D M, Men C L, Cao M, Wu G D 2013 Acta Phys. Sin. 62 117305 (in Chinese) [朱德明, 门传玲, 曹敏, 吴国栋 2013 物理学报 62 117305]

    [19]

    Wee G, Larsson O, Srinivasan M, Berggren M, Crispin X, Mhaisalkar S 2010 Adv. Funct. Mater. 20 4344

    [20]

    Jiang J, Sun J, Dou W, Zhou B, Wan Q 2011 Appl. Phys. Lett. 99 193502

    [21]

    Guo L Q, Huang Y K, Shi Y Y, Cheng G G, Ding J N 2015 J. Phys. D: Appl. Phys. 48 285103

    [22]

    Liu S, Tian J Q, Wang L, Luo Y L, Lua W B, Sun X B 2011 Biosens. Bioelectron. 26 4491

  • [1] Ji Ting-Wei, Bai Gang. Effect of biaxial misfit strain on properties of ferroelectric double gate negative capacitance transistors. Acta Physica Sinica, 2023, 72(6): 067701. doi: 10.7498/aps.72.20222190
    [2] Li Yan, Chen Xin-Li, Wang Wei-Sheng, Shi Zhi-Wen, Zhu Li-Qiang. Egg shell membrane based electrolyte gated oxide neuromorphic transistor. Acta Physica Sinica, 2023, 72(15): 157302. doi: 10.7498/aps.72.20230411
    [3] He Bing, Lian Yu-Xiang, Wu Mu-Sheng, Luo Wen-Wei, Yang Shen-Bo, Ouyang Chu-Ying. Improvement of performance of halide solid electrolyte by tuning cations. Acta Physica Sinica, 2022, 71(20): 208201. doi: 10.7498/aps.71.20221050
    [4] Xu Han, Zhang Lu. Charge carrier transport in oxygen-ion conducting electrolytes with considering space charge layer effect. Acta Physica Sinica, 2021, 70(6): 068801. doi: 10.7498/aps.70.20201651
    [5] Zhang Nian, Ren Guo-Xi, Zhang Hui, Zhou Deng, Liu Xiao-Song. Research progress of interface problems and optimization of garnet-type solid electrolyte. Acta Physica Sinica, 2020, 69(22): 228806. doi: 10.7498/aps.69.20201533
    [6] Han Bo, Liang Ya-Qiong. Measurement of magnetic field of capacitor-coil target using proton radiography. Acta Physica Sinica, 2020, 69(17): 175202. doi: 10.7498/aps.69.20200215
    [7] Shao Guang-Wei, Guo Shan-Shan, Yu Rui, Chen Nan-Liang, Ye Mei-Dan, Liu Xiang-Yang. Stretchable supercapacitors: Electrodes, electrolytes, and devices. Acta Physica Sinica, 2020, 69(17): 178801. doi: 10.7498/aps.69.20200881
    [8] Guo Li-Qiang, Tao Jian, Wen Juan, Cheng Guang-Gui, Yuan Ning-Yi, Ding Jian-Ning. Corn starch solid electrolyte gated proton/electron hybrid synaptic transistor. Acta Physica Sinica, 2017, 66(16): 168501. doi: 10.7498/aps.66.168501
    [9] Liu Yong-Bo, Jian Yong-Jun. Electrokinetic energy conversion efficiency in a polyelectrolyte-grafted nanotube. Acta Physica Sinica, 2016, 65(8): 084704. doi: 10.7498/aps.65.084704
    [10] Guo Wen-Hao, Xiao Hui, Men Chuan-Ling. Effects of protons within SiO2 solid-state electrolyte on performances of oxide electric-double-layer thin film transistor. Acta Physica Sinica, 2015, 64(7): 077302. doi: 10.7498/aps.64.077302
    [11] Hu Jia, Xu Yi-Jun, Ye Chao. CHF3 dual-frequency capacitively coupled plasma. Acta Physica Sinica, 2010, 59(4): 2661-2665. doi: 10.7498/aps.59.2661
    [12] Bian Lei-Xiang, Wen Yu-Mei, Li Ping. Analysis of magneto-mechano-electronic coupling factors in magnetostrictive/piezoelectric laminated composite. Acta Physica Sinica, 2009, 58(6): 4205-4213. doi: 10.7498/aps.58.4205
    [13] Su Jie, Wang Ji-Suo, Liang Bao-Long, Zhang Xiao-Yan. The energy and thermal effects of mesoscopic capacitance coupling LC circuit at finite temperature. Acta Physica Sinica, 2008, 57(11): 7216-7220. doi: 10.7498/aps.57.7216
    [14] Qiu Shen-Yu, Cai Shao-Hong. Quantum effect of dissipative mesoscopic capacitance coupled circuit. Acta Physica Sinica, 2006, 55(2): 816-819. doi: 10.7498/aps.55.816
    [15] MIU ZHONG-LIN, CHEN PING-PING, CAI WEI-YING, LI ZHI-FENG, XU WEN-LAN, YUAN XIAN-ZHANG, LIU PING, SHI GUO-LIANG, CHEN CHANG-MING, ZHU DE-ZHANG, PAN HAO-CHANG, HU JUN, LI MING-QIAN, LU WEI. . Acta Physica Sinica, 2001, 50(1): 116-119. doi: 10.7498/aps.50.116
    [16] WANG JI-SUO, LIU TANG-KUN, ZHAN MING-SHENG. QUANTUM FLUCTUATIONS OF A MESOSCOPIC CAPACITANCE COUPLING CIRCUITS IN A DISPLACED SQUEEZED FOCK STATE. Acta Physica Sinica, 2000, 49(11): 2271-2275. doi: 10.7498/aps.49.2271
    [17] WANG JI-SUO, HAN BAO-CUN, SUN CHANG-YONG. QUANTUM FLUCTUATIONS IN MESOSCOPIC CAPACITANCE COUPLED CIRCUITS. Acta Physica Sinica, 1998, 47(7): 1187-1192. doi: 10.7498/aps.47.1187
    [18] HU YONG-JIAN, PENG CHU-BING, FANG RUI-YI, LI WEI-JUN, DAI DAO-SHENG. INTERLAYER COUPLING AND MAGNETORESISTANT EFFECT IN THE [Fe/Cr] MULTILAYERS DOPED WITH Si LAYERS. Acta Physica Sinica, 1996, 45(10): 1744-1748. doi: 10.7498/aps.45.1744
    [19] ZHENG YONG-MEI, CHEN YU, MIAO RONG-ZHI. ON THE CONTINUOUS TRANSITION FROM PTC EFFECT TO GBBL CAPACITOR FOR BaTiO3 SEMICONDUCTING CERAMICS——APPLICATION OF THE GRAIN BOUNDARY BARRIER MODEL. Acta Physica Sinica, 1996, 45(9): 1543-1550. doi: 10.7498/aps.45.1543
    [20] CAI XUE-YU, YIN DAO-LE. ON THE PROXIMITY EFFECT OF SUPERCONDUCTING MULTILAYER FILMS. Acta Physica Sinica, 1981, 30(5): 700-704. doi: 10.7498/aps.30.700
Metrics
  • Abstract views:  5510
  • PDF Downloads:  190
  • Cited By: 0
Publishing process
  • Received Date:  25 April 2016
  • Accepted Date:  16 June 2016
  • Published Online:  05 September 2016

/

返回文章
返回