Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamical studies of cellular signaling networks in cancers

Li Xiang Liu Feng Shuai Jian-Wei

Citation:

Dynamical studies of cellular signaling networks in cancers

Li Xiang, Liu Feng, Shuai Jian-Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Cancer, as a conundrum, is currently the biggest killer of human health. The major viewpoint of carcinogenesis is owing to somatic gene mutations. Based on such a viewpoint and the development of gene sequencing technology, extensive genomic alterations in cancer genomes have been identified. How to develop a better understanding of the link between gene mutations and carcinogenesis as well as efficient clinical cancer therapy is therefore a major challenge. Weinberg and Hanahan have suggested 10 hallmarks of cancer. The hallmarks are highly regulated by the corresponding signaling pathways. Thus, cancer itself is also a disease of dysfunction of signal transduction pathways related to multiple fundamental cell processes, including proliferation, differentiation, apoptosis, invasion and so on. Despite the signaling pathways are extremely complex in cancer cells, one can still focus on the signaling networks that govern the corresponding cell processes for modeling to discuss its dynamics and regulation functions quantitatively. Systems biology provides appropriate approach to integrate the experimental data (clinical data) and signaling pathway for a comprehensive analysis, resulting in a further prediction for optimal therapy and drug discovery. In this paper, we review the recent progress of dynamical modeling of signaling networks by using systems biology approaches that help to exploring the mechanisms of carcinogenesis. We first discuss the motif dynamics of the signaling networks. The presented generic circuit model can be decomposed into two loops and the circuit can achieve tristability through four kinds of bifurcation scenarios when parameter values are varied in a wide range. Then, we show the relative well-studied core signaling networks that regulate the cell survival, apoptosis, proliferation, invasion and energy metabolism processes. For each fundamental cell process, we individually review the dynamics of corresponding signaling network based on the systems biology approaches, including the NF-B signaling pathway that regulates the cell survival process, the Ras signaling pathway that governs the cell proliferation process, the EMT and mitochondrial signaling pathway that modulate the cell invasion and apoptosis processes. Furthermore, two coupled signaling networks, i.e., the p53 and TNF- signaling networks are discussed. Lastly, we review the breast cancer and gastric cancer signaling networks which contain several fundamental cell processes. The potential contribution for cancer treatment is also suggested. These dynamical modeling based on the core signaling networks can facilitate the understanding of the mechanisms of carcinogenesis and provide us the possible clues and ideas of the cancer treatment and drug design. We believe more exciting research works in this field will be stimulated in the near future.
      Corresponding author: Shuai Jian-Wei, jianweishuai@xmu.edu.cn
    • Funds: Project supported by 973 program (No. 2013CB834104), the National Natural Science Foundation of China (Grant Nos. 31370830, 11175084, 31361163003) and the Fujian Province Funds for Leading Scientist in Universities.
    [1]

    Torre L, Bray F, Siegle R L, Ferlay J, Lortet-Tieulent J, Jemal A 2012 CA Cancer J. Clin. 65 87

    [2]

    Chen W, Zheng R, Baade P D, Zhang S, Zeng H, Bray F, Jemal A, Yu X Q, He J 2015 CA Cancer J. Clin. 66 115

    [3]

    Hanahan D and Weinberg R A 2011 Cell 144 646

    [4]

    Hanahan D and Weinberg R A 2000 Cell 100 57

    [5]

    Futreal P A, Kasprzyk A, Birney E, Mullikin J C, Wooster R, Stratton M R 2001 Nature 409 850

    [6]

    Parsons D W, Jones S, Zhang X Lin J C, Leary R J, Angenendt P, Mankoo P, Carter H, Siu I M, Gallia G L, Olivi A, McLendon R, Rasheed B A, Keir S, Nikolskaya T, Nikolsky Y, Busam D A, Tekleab H, Diaz L A Jr, Hartigan J, Smith D R, Strausberg R L, Marie S K, Shinjo S M, Yan H, Riggins G J, Bigner D D, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu V E, Kinzler K W 2008 Science 321 1807

    [7]

    Jones S, Zhang X, Parsons D W, Lin J C, Leary R J, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, Hong S M, Fu B, Lin M T, Calhoun E S, Kamiyama M, Walter K, Nikolskaya T, Nikolsky Y, Hartigan J, Smith D R, Hidalgo M, Leach S D, Klein A P, Jaffee E M, Goggins M, Maitra A, Iacobuzio-Donahue C, Eshleman J R, Kern S E, Hruban R H, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu V E, Kinzler K W 2008 Science 321 1801

    [8]

    Cancer Genome Atlas Research Network 2008 Nature 455 1061

    [9]

    Citri A, Yarden Y 2006 Nat. Rev. Mol. Cell Biol. 7 505

    [10]

    Hood L 2003 Mech. Ageing Dev. 124 9

    [11]

    Kitano H 2002 Science 295 1662

    [12]

    Iyengar R 2009 Sci. Signal 2 eg3

    [13]

    Friedman N, Linial M, Nachman I, Pe'er D 2000 J. Comput. Biol. 7 601

    [14]

    Kauffman S 1969 Nature 224 177

    [15]

    Schoeberl B, Eichler-Jonsson C, Gilles E D, Mller G 2002 Nat. Biotechnol. 20 370

    [16]

    Markevich N I, Tsyganov M A, Hoek J B, Kholodenko B N 2006 Mol. Syst. Biol. 2 61

    [17]

    Gillespie D T 2007 Annu. Rev. Phys. Chem. 58 35

    [18]

    Kirkpatrick S, Vecchi M P 1983 Science 220 671

    [19]

    Holland J H 1975 Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence (Ann Arbor: Control Artificial Intelligence University of Michigan Press)

    [20]

    Jerne N K 1974 Ann. Immunol. (Paris) 125C 373

    [21]

    Kreeger P K, Lauffenburger D A 2010 Carcinogenesis 31 2

    [22]

    Khalil I G, Hill C 2005 Curr. Opin. Oncol. 17 44

    [23]

    Aldridge B B, Burke J M, Lauffenburger D A, Sorger P K 2006 Nat. Cell. Biol. 8 1195

    [24]

    Zhang X P, Cheng Z, Liu F, Wang W 2007 Phys. Rev. E 76 031924.

    [25]

    Tian X J, Zhang X P, Liu F, Wang W 2009 Phys. Rev. E 80 011926

    [26]

    Lu M, Jolly M K, Levine H, Onuchic J N, Ben-Jacob E 2013 Proc. Natl. Acad. Sci. USA. 110 18144

    [27]

    Huang B, Xia Y, Liu F, Wang W 2016 Sci. Rep. 6 28096

    [28]

    Karin M, Lin A 2002 Nat. Immunol. 3 221

    [29]

    Perkins N D 2012 Nat. Rev. Cancer 12 121

    [30]

    Nakanishi C, Toi M 2005 Nat. Rev. Cancer 5 297

    [31]

    Karin M, Ben-Neriah Y 2000 Annu. Rev.Immunol. 18 621

    [32]

    Hoffmann A, Levchenko A, Scott M L, Baltimore D 2002 Science 298 1241

    [33]

    Parada L F, Tabin C J, Shih C, Weinberg R A 1982 Nature 297 474

    [34]

    Bos J L 1989 Cancer Res. 49 4682

    [35]

    Bos J L, Rehmann H, Wittinghofer A 2007 Cell 129 865

    [36]

    Stites E C, Trampont P C, Ma Z, Ravichandran K S 2007 Science 318 463

    [37]

    Thiery J P 2002 Nat. Rev. Cancer 2 442

    [38]

    Nakaya Y, Sheng G 2008 Dev. Growth Differ. 50 755

    [39]

    Morel A P, Livre M, Thomas C, Hinkal G, Ansieau S, Puisieux A 2008 PLoS One 3 e2888

    [40]

    Yang A D, Camp E R, Fan F, Shen L, Gray M J, Liu W, Somcio R, Bauer T W, Wu Y, Hicklin D J, Ellis L M 2006 Cancer Res. 66 46

    [41]

    De Craene B, Berx G 2013 Nat. Rev. Cancer 13 97

    [42]

    Steinway S N, Zaudo J G, Ding W, Rountree C B, Feith D J, Loughran T P Jr, Albert R 2014 Cancer Res. 74 5963

    [43]

    Tait S W, Green D R 2010 Nat. Rev. Mol. Cell Biol. 11 621

    [44]

    Zhao L, Sun T, Pei J, Ouyang Q 2015 Proc. Natl. Acad. Sci. USA. 112 E4046

    [45]

    Zhang X P, Liu F, Cheng Z, Wang W 2009 Proc. Natl. Acad. Sci. USA. 106 12245

    [46]

    Zhang X P, Liu F, Wang W 2011 Proc. Natl. Acad. Sci. USA. 108 8990

    [47]

    Beg A A, Sha W C, Bronson R T, Ghosh S, Baltimore D 1995 Nature 376 167

    [48]

    Neumann L, Pforr C, Beaudouin J, Pappa A, Fricker N, Krammer P H, Lavrik I N, Eils R 2010 Mol. Syst. Biol. 6 352

    [49]

    Takahashi R, Deveraux Q, Tamm I, Welsh K, Assa-Munt N, Salvesen G S, Reed J C 1998 J. Biol. Chem. 273 7787

    [50]

    Khoshnan A, Tindell C, Laux I, Bae D, Bennett B, Nel A E 2000 J. Immunol. 165 1743

    [51]

    Li X, Chen Y, Qi H, Liu L, Shuai J 2016 Oncotarget 7 34599

    [52]

    Futreal P A, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton M R 2004 Nat. Rev. Cancer 4 177

    [53]

    Kitano H 2004 Nat. Rev. Cancer. 4 227

    [54]

    Pujana M A, Han J D, Starita L M, Stevens K N, Tewari M, Ahn J S, Rennert G, Moreno V, Kirchhoff T, Gold B, Assmann V, Elshamy W M, Rual J F, Levine D, Rozek L S, Gelman R S, Gunsalus K C, Greenberg R A, Sobhian B, Bertin N, Venkatesan K, Ayivi-Guedehoussou N, Sol X, Hernndez P, Lzaro C, Nathanson K L, Weber B L, Cusick M E, Hill D E, Offit K, Livingston D M, Gruber S B, Parvin J D, Vidal M 2007 Nat. Genet. 39 1338

    [55]

    Lei X, Tian W, Zhu H, Chen T, Ao P 2015 Scientific Reports 5 13597

    [56]

    Barros R, Freund J N, David L, Almeida R 2012 Trends Mol. Med. 18 555

    [57]

    Tsukamoto T, Inada K, Tanaka H, Mizoshita T, Mihara M, Ushijima T, Yamamura Y, Nakamura S, Tatematsu M 2004 J. Cancer Res. Clin. Oncol. 130 135

    [58]

    Li S, Zhu X, Liu B, Wang G, Ao P 2015 Oncotarget 6 13607

    [59]

    Anderson A R, Quaranta V 2008 Nat. Rev. Cancer 8 227

    [60]

    Tomasetti C, Vogelstein B 2015 Science 347 78

    [61]

    Stratton M R, Campbell P J, Futreal P A 2009 Nature 458 719

    [62]

    Fischer K R, Durrans A, Lee S, Sheng J, Li F, Wong S T, Choi H, El Rayes T, Ryu S, Troeger J, Schwabe R F, Vahdat L T, Altorki N K, Mittal V, Gao D 2015 Nature 527 472

    [63]

    Li W, Kang Y 2016 Trends Cancer 2 65

    [64]

    Wei S C, Yang J 2016 Trends Cell Biol. 26 111

    [65]

    Bild A H, Potti A, Nevins J R 2006 Nat. Rev. Cancer 6 735

    [66]

    Wang Z, Deisboeck T S 2014 Drug Discov. Today 19 145

  • [1]

    Torre L, Bray F, Siegle R L, Ferlay J, Lortet-Tieulent J, Jemal A 2012 CA Cancer J. Clin. 65 87

    [2]

    Chen W, Zheng R, Baade P D, Zhang S, Zeng H, Bray F, Jemal A, Yu X Q, He J 2015 CA Cancer J. Clin. 66 115

    [3]

    Hanahan D and Weinberg R A 2011 Cell 144 646

    [4]

    Hanahan D and Weinberg R A 2000 Cell 100 57

    [5]

    Futreal P A, Kasprzyk A, Birney E, Mullikin J C, Wooster R, Stratton M R 2001 Nature 409 850

    [6]

    Parsons D W, Jones S, Zhang X Lin J C, Leary R J, Angenendt P, Mankoo P, Carter H, Siu I M, Gallia G L, Olivi A, McLendon R, Rasheed B A, Keir S, Nikolskaya T, Nikolsky Y, Busam D A, Tekleab H, Diaz L A Jr, Hartigan J, Smith D R, Strausberg R L, Marie S K, Shinjo S M, Yan H, Riggins G J, Bigner D D, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu V E, Kinzler K W 2008 Science 321 1807

    [7]

    Jones S, Zhang X, Parsons D W, Lin J C, Leary R J, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, Hong S M, Fu B, Lin M T, Calhoun E S, Kamiyama M, Walter K, Nikolskaya T, Nikolsky Y, Hartigan J, Smith D R, Hidalgo M, Leach S D, Klein A P, Jaffee E M, Goggins M, Maitra A, Iacobuzio-Donahue C, Eshleman J R, Kern S E, Hruban R H, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu V E, Kinzler K W 2008 Science 321 1801

    [8]

    Cancer Genome Atlas Research Network 2008 Nature 455 1061

    [9]

    Citri A, Yarden Y 2006 Nat. Rev. Mol. Cell Biol. 7 505

    [10]

    Hood L 2003 Mech. Ageing Dev. 124 9

    [11]

    Kitano H 2002 Science 295 1662

    [12]

    Iyengar R 2009 Sci. Signal 2 eg3

    [13]

    Friedman N, Linial M, Nachman I, Pe'er D 2000 J. Comput. Biol. 7 601

    [14]

    Kauffman S 1969 Nature 224 177

    [15]

    Schoeberl B, Eichler-Jonsson C, Gilles E D, Mller G 2002 Nat. Biotechnol. 20 370

    [16]

    Markevich N I, Tsyganov M A, Hoek J B, Kholodenko B N 2006 Mol. Syst. Biol. 2 61

    [17]

    Gillespie D T 2007 Annu. Rev. Phys. Chem. 58 35

    [18]

    Kirkpatrick S, Vecchi M P 1983 Science 220 671

    [19]

    Holland J H 1975 Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence (Ann Arbor: Control Artificial Intelligence University of Michigan Press)

    [20]

    Jerne N K 1974 Ann. Immunol. (Paris) 125C 373

    [21]

    Kreeger P K, Lauffenburger D A 2010 Carcinogenesis 31 2

    [22]

    Khalil I G, Hill C 2005 Curr. Opin. Oncol. 17 44

    [23]

    Aldridge B B, Burke J M, Lauffenburger D A, Sorger P K 2006 Nat. Cell. Biol. 8 1195

    [24]

    Zhang X P, Cheng Z, Liu F, Wang W 2007 Phys. Rev. E 76 031924.

    [25]

    Tian X J, Zhang X P, Liu F, Wang W 2009 Phys. Rev. E 80 011926

    [26]

    Lu M, Jolly M K, Levine H, Onuchic J N, Ben-Jacob E 2013 Proc. Natl. Acad. Sci. USA. 110 18144

    [27]

    Huang B, Xia Y, Liu F, Wang W 2016 Sci. Rep. 6 28096

    [28]

    Karin M, Lin A 2002 Nat. Immunol. 3 221

    [29]

    Perkins N D 2012 Nat. Rev. Cancer 12 121

    [30]

    Nakanishi C, Toi M 2005 Nat. Rev. Cancer 5 297

    [31]

    Karin M, Ben-Neriah Y 2000 Annu. Rev.Immunol. 18 621

    [32]

    Hoffmann A, Levchenko A, Scott M L, Baltimore D 2002 Science 298 1241

    [33]

    Parada L F, Tabin C J, Shih C, Weinberg R A 1982 Nature 297 474

    [34]

    Bos J L 1989 Cancer Res. 49 4682

    [35]

    Bos J L, Rehmann H, Wittinghofer A 2007 Cell 129 865

    [36]

    Stites E C, Trampont P C, Ma Z, Ravichandran K S 2007 Science 318 463

    [37]

    Thiery J P 2002 Nat. Rev. Cancer 2 442

    [38]

    Nakaya Y, Sheng G 2008 Dev. Growth Differ. 50 755

    [39]

    Morel A P, Livre M, Thomas C, Hinkal G, Ansieau S, Puisieux A 2008 PLoS One 3 e2888

    [40]

    Yang A D, Camp E R, Fan F, Shen L, Gray M J, Liu W, Somcio R, Bauer T W, Wu Y, Hicklin D J, Ellis L M 2006 Cancer Res. 66 46

    [41]

    De Craene B, Berx G 2013 Nat. Rev. Cancer 13 97

    [42]

    Steinway S N, Zaudo J G, Ding W, Rountree C B, Feith D J, Loughran T P Jr, Albert R 2014 Cancer Res. 74 5963

    [43]

    Tait S W, Green D R 2010 Nat. Rev. Mol. Cell Biol. 11 621

    [44]

    Zhao L, Sun T, Pei J, Ouyang Q 2015 Proc. Natl. Acad. Sci. USA. 112 E4046

    [45]

    Zhang X P, Liu F, Cheng Z, Wang W 2009 Proc. Natl. Acad. Sci. USA. 106 12245

    [46]

    Zhang X P, Liu F, Wang W 2011 Proc. Natl. Acad. Sci. USA. 108 8990

    [47]

    Beg A A, Sha W C, Bronson R T, Ghosh S, Baltimore D 1995 Nature 376 167

    [48]

    Neumann L, Pforr C, Beaudouin J, Pappa A, Fricker N, Krammer P H, Lavrik I N, Eils R 2010 Mol. Syst. Biol. 6 352

    [49]

    Takahashi R, Deveraux Q, Tamm I, Welsh K, Assa-Munt N, Salvesen G S, Reed J C 1998 J. Biol. Chem. 273 7787

    [50]

    Khoshnan A, Tindell C, Laux I, Bae D, Bennett B, Nel A E 2000 J. Immunol. 165 1743

    [51]

    Li X, Chen Y, Qi H, Liu L, Shuai J 2016 Oncotarget 7 34599

    [52]

    Futreal P A, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton M R 2004 Nat. Rev. Cancer 4 177

    [53]

    Kitano H 2004 Nat. Rev. Cancer. 4 227

    [54]

    Pujana M A, Han J D, Starita L M, Stevens K N, Tewari M, Ahn J S, Rennert G, Moreno V, Kirchhoff T, Gold B, Assmann V, Elshamy W M, Rual J F, Levine D, Rozek L S, Gelman R S, Gunsalus K C, Greenberg R A, Sobhian B, Bertin N, Venkatesan K, Ayivi-Guedehoussou N, Sol X, Hernndez P, Lzaro C, Nathanson K L, Weber B L, Cusick M E, Hill D E, Offit K, Livingston D M, Gruber S B, Parvin J D, Vidal M 2007 Nat. Genet. 39 1338

    [55]

    Lei X, Tian W, Zhu H, Chen T, Ao P 2015 Scientific Reports 5 13597

    [56]

    Barros R, Freund J N, David L, Almeida R 2012 Trends Mol. Med. 18 555

    [57]

    Tsukamoto T, Inada K, Tanaka H, Mizoshita T, Mihara M, Ushijima T, Yamamura Y, Nakamura S, Tatematsu M 2004 J. Cancer Res. Clin. Oncol. 130 135

    [58]

    Li S, Zhu X, Liu B, Wang G, Ao P 2015 Oncotarget 6 13607

    [59]

    Anderson A R, Quaranta V 2008 Nat. Rev. Cancer 8 227

    [60]

    Tomasetti C, Vogelstein B 2015 Science 347 78

    [61]

    Stratton M R, Campbell P J, Futreal P A 2009 Nature 458 719

    [62]

    Fischer K R, Durrans A, Lee S, Sheng J, Li F, Wong S T, Choi H, El Rayes T, Ryu S, Troeger J, Schwabe R F, Vahdat L T, Altorki N K, Mittal V, Gao D 2015 Nature 527 472

    [63]

    Li W, Kang Y 2016 Trends Cancer 2 65

    [64]

    Wei S C, Yang J 2016 Trends Cell Biol. 26 111

    [65]

    Bild A H, Potti A, Nevins J R 2006 Nat. Rev. Cancer 6 735

    [66]

    Wang Z, Deisboeck T S 2014 Drug Discov. Today 19 145

  • [1] Chen Hui-Yan, Li Luo-Fei, Wang Wei, Cao Yi, Lei Hai. Regulation of mechanical force on cardiomyocytes beating. Acta Physica Sinica, 2024, 73(8): 088701. doi: 10.7498/aps.73.20240095
    [2] Research progress on biological effects of cell membrane under infrared and terahertz irradiation. Acta Physica Sinica, 2022, (): . doi: 10.7498/aps.71.20212030
    [3] Guo Yu-Yi, Shi Fu-Kun, Wang Qun, Ji Zhen-Yu, Zhuang Jie. A review on bioelectrical effects of cellular organelles by high voltage nanosecond pulsed electric fields. Acta Physica Sinica, 2022, 71(6): 068701. doi: 10.7498/aps.71.20211850
    [4] Liu Sheng-Long, Yang Lu, Zhu Cheng-Jun, Liu Kai, Han Wei, Yao Jia-Feng. A method of identifying cell suspension concentration based on bioimpedance spectroscopy. Acta Physica Sinica, 2022, 71(7): 078701. doi: 10.7498/aps.71.20211837
    [5] Bo Wen-Fei, Che Rong, Kong Lei, Zhang Ming-Jie, Zhang Xiao-Bo. Research progress of biological effects of cell membrane under infrared and terahertz irradiation. Acta Physica Sinica, 2021, 70(24): 248707. doi: 10.7498/aps.70.20212030
    [6] Yao Jia-Feng, Wan Jian-Fen, Yang Lu, Liu Kai, Chen Bai, Wu Hong-Tao. Electrical characteristics of cells with electrical impedance spectroscopy. Acta Physica Sinica, 2020, 69(16): 163301. doi: 10.7498/aps.69.20200601
    [7] Tian Xiao-Fei, Zhang Xin. Biological effects on cells in strong static magnetic field. Acta Physica Sinica, 2018, 67(14): 148701. doi: 10.7498/aps.67.20180378
    [8] Si Tie-Yan, Yuan Jun-Hua, Wu Yi-Lin, Jay X. Tang. Physical biology of bacterial motility. Acta Physica Sinica, 2016, 65(17): 178703. doi: 10.7498/aps.65.178703
    [9] Sun Bo. Collagen network and the mechanical microenvironment of cancer cells. Acta Physica Sinica, 2015, 64(5): 058201. doi: 10.7498/aps.64.058201
    [10] Lu Jin-Lei, Wang Xiao-Chen, Rong Xiao-Hui, Liu Li-Yu. 3D micro/nano fabrication and its application in cancer biophysics. Acta Physica Sinica, 2015, 64(5): 058705. doi: 10.7498/aps.64.058705
    [11] Jia Bing, Gu Hua-Guang. Experimental research on synchronous rhythms of biological network composed of heterogeneous cells. Acta Physica Sinica, 2012, 61(24): 240505. doi: 10.7498/aps.61.240505
    [12] Fan Jia-Dong, Jiang Huai-Dong. Coherent X-ray diffraction imaging and its applications in materials science and biology. Acta Physica Sinica, 2012, 61(21): 218702. doi: 10.7498/aps.61.218702
    [13] Yang Xiao-Kuo, Cai Li, Zhao Xiao-Hui, Feng Chao-Wen. Function projective synchronization of quntum cellular neural network and Lorenz hyperchaotic system with uncertain parameters. Acta Physica Sinica, 2010, 59(6): 3740-3746. doi: 10.7498/aps.59.3740
    [14] Li Qin, Cai Li, Feng Chao-Wen. Cellular neural network with hybrid single-electron and MOS transistors architecture and its application. Acta Physica Sinica, 2009, 58(6): 4183-4188. doi: 10.7498/aps.58.4183
    [15] Feng Chao-Wen, Cai Li, Li Qin. Implementation and application of cellular neural networks based on single electron device. Acta Physica Sinica, 2008, 57(4): 2462-2467. doi: 10.7498/aps.57.2462
    [16] Zhou Xiao-Rong, Luo Xiao-Shu. Coherence resonance in neural networks with small-world connections. Acta Physica Sinica, 2008, 57(5): 2849-2853. doi: 10.7498/aps.57.2849
    [17] Wu Zhong-Qiang, Tan Fu-Xiao, Wang Shao-Xian. The synchronization of hyper-chaotic system of cellular neural network based on passivity. Acta Physica Sinica, 2006, 55(4): 1651-1658. doi: 10.7498/aps.55.1651
    [18] Cai Li, Ma Xi-Kui, Wang Sen. Study of hyperchaotic behavior in quantum cellular neural networks. Acta Physica Sinica, 2003, 52(12): 3002-3006. doi: 10.7498/aps.52.3002
    [19] Wang Hong-Xia, He Chen. Dynamical behaviour of a cellular neural network. Acta Physica Sinica, 2003, 52(10): 2409-2414. doi: 10.7498/aps.52.2409
    [20] Peng Jian-Hua, Tian Xiao-Jian, Wang Pei-Jin, Chen Xiao-Bing. . Acta Physica Sinica, 1995, 44(2): 177-183. doi: 10.7498/aps.44.177
Metrics
  • Abstract views:  6157
  • PDF Downloads:  432
  • Cited By: 0
Publishing process
  • Received Date:  06 June 2016
  • Accepted Date:  27 June 2016
  • Published Online:  05 September 2016

/

返回文章
返回