Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

28.3 W 355 nm laser generated by efficient third-harmonic in CsB3O5 crystal

Xie Shi-Yong Lu Yuan-Fu Zhang Xiao-Fu Le Xiao-Yun Yang Cheng-Liang Wang Bao-Shan Xu Zu-Yan

Citation:

28.3 W 355 nm laser generated by efficient third-harmonic in CsB3O5 crystal

Xie Shi-Yong, Lu Yuan-Fu, Zhang Xiao-Fu, Le Xiao-Yun, Yang Cheng-Liang, Wang Bao-Shan, Xu Zu-Yan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Ultraviolet laser operating at 355 nm has been found to have wide applications in scientific and industrial fields of laser radar, biological fluorescence medicine, micro processing, laser marking and laser ablation, owing to its superior properties of short wavelength, high single-photon energy, and high resolution. In addition, 355 nm laser plays a vital role in promoting the development of RGB full color display because it can be used as an excitation source for investigating the blue light emitting materials. LiB3O5 (LBO) crystal possesses relatively high nonlinear coefficient and high optical damage threshold. Therefore, it is generally employed to generate 355 nm light through the third harmonic generation (THG) of the Nd:YAG laser (1064 nm). However, the CsB3O5(CBO) crystal, which also belongs to B3O7 group has attracted more attention for its larger nonlinear coefficient. The temperature sensitivity is another important characteristic of the nonlinear crystal. Temperature fluctuation can cause the variation of refractive index of nonlinear optical crystal, which leads to phase mismatch and thus affects the nonlinear conversion efficiency. The principal refractive index of CBO crystal was accurately measured using the auto-collimation method in a temperature range from 40 to 190 ℃ for the first time by Zhang et al. in 2013 [Zhang G C, et al. 2013 Opt. Lett. 38 1594], while the temperature bandwidth of CBO for 355 nm THG has not been reported. In the present paper, a high-power 355 nm laser is produced by efficient THG of an acousto-optic Q-switched quasicontinuous wave 1064 nm laser in CBO crystal. The master-oscillation power-amplification (MOPA) system with Nd:YAG crystal which is side pumped by high-power pulsed laser diode (LD) array delivers 210 W of a quasi-continuous Q-switched 1064 nm laser power. The laser operates at a 1 kHz repetition rate, and each pulse train contains five Q-switched pulses each with a duration of 40 ns. The 98 W of 532 nm green light is produced by second-harmonic generated in type-I LBO crystal. The 28.3 W ultraviolet laser is achieved by a 30-mm type-II CBO crystal through the sum frequency of 1064 nm and 532 nm light. The conversion efficiency from the fundamental light to the third harmonic reaches 13.5%, which is 28.6% higher than that obtained with a type-II LBO crystal under the same experimental conditions. The temperature sensitivity of CBO crystal in the 355 nm THG process is studied. Its temperature bandwidth is 25, which is much broader than that of LBO crystal. The experimental results show that the CBO crystal is superior to LBO crystal in the sense of conversion efficiency and temperature sensitivity for THG of 355 nm.
      Corresponding author: Lu Yuan-Fu, yf.lu@siat.ac.cn
    • Funds: Project Supported by the State Key Laboratory of Applied Optics, China, the National Natural Science Foundation of China (Grant No. 61205101), and the Science and Technology Project of Shenzhen, China (Grant Nos. GJHZ20140417113430592, JCYJ20140417113130693, JCYJ20150925163313898).
    [1]

    Jing M, Hua D X, Le J 2016 Acta Phys. Sin. 65 070704 (in Chinese) [景敏, 华灯鑫, 乐静 2016 物理学报 65 070704]

    [2]

    Drakaki E, Dessinioti C, Stratigos A J, Salavastru C, Antoniou C 2014 J. Biomed. Opt. 19 030901

    [3]

    Itoh S, Sakakura M, Shimotsuma Y, Miura K 2015 Appl. Phys. B 119 519

    [4]

    Zhang F, Duan J, Zeng X Y, Li X Y 2010 Infrared and Laser Engineering 39 143 (in Chinese) [张菲, 段军, 曾晓雁, 李祥友 2010 红外与激光工程 39 143]

    [5]

    Ryoo K, Kim M, Sung J, Kim K, Kang M 2015 J. Mech. Sci. Technol. 29 365

    [6]

    Bao L D, Han J H, Duan T, Sun N C, Gao X, Feng G Y, Yang L M, Niu R H, Liu Q X 2012 Acta Phys. Sin. 61 197901 (in Chinese) [包凌东, 韩敬华, 段涛, 孙年春, 高翔, 冯国英, 杨李茗, 牛瑞华, 刘全喜 2012 物理学报 61 197901]

    [7]

    Shi L F, Chen Q, Yang P, Li B, Wang Y X, Zhang L J, Ye Y Y 2014 Chinese Journal of Luminescence 35 926 (in Chinese) [史林芳, 陈倩, 杨平, 李兵, 王雨香, 张丽君, 叶媛媛 2014 发光学报 35 926]

    [8]

    Zhao S L, Hou Y B, Xu Z 2006 Chinese Journal of Luminescence 27 191 (in Chinese) [赵谡玲, 侯延冰, 徐征 2006 发光学报 27 191]

    [9]

    Gapontsev V P, Tyrtyshnyy V A, Vershinin O I, Davydov B L, Oulianov D A 2013 Opt. Express 21 3715

    [10]

    Cole B, Hays A, Mcintosh C, Goldberg L 2013 Proc. SPIE 8599 85991L

    [11]

    Liu H, Gong M L 2009 Acta Phys. Sin. 58 7000 (in Chinese) [刘欢, 巩马理 2009 物理学报 58 7000]

    [12]

    Wu Y C, Fu P Z, Wang J X, Xu Z Y, Zhang L, Kong Y F, Chen C T 1997 Opt. Lett. 22 1840

    [13]

    Kitano H, Matsui T, Sato K, Ushiyama N, Yoshimura M, Mori Y, Sasaki T 2003 Opt. Lett. 28 263

    [14]

    Guo L, Wang G L, Zhang H B, Cui D F, Wu Y C, Lu L, Zhang J Y, Huang J Y, Xu Z Y 2007 Appl. Phys. B 88 197

    [15]

    Wu Y C, Chang F, Fu P Z, Chen C T, Wang G L, Geng A C, Bo Y, Cui D F, Xu Z Y 2005 Chin. Phys. Lett. 22 1426

    [16]

    Zhang G C, Liu S S, Huang L X, Zhang G, Wu Y C 2013 Opt. Lett. 38 1594

    [17]

    Wang P Y, Xie S Y, Bo Y, Wang B S, Zuo J W, Wang Z C, Shen Y, Zhang F F, Wei K, Jin K, Xu Y T, Xu J L, Peng Q J, Zhang J Y, Lei W Q, Cui D F, Zhang Y D, Xu Z Y 2014 Chin. Phys. B 23 094208

    [18]

    Wang P Y 2014 Ph. D. Dissertation (Beijing: Technical Institute of Physics and Chemistry, Chinese Academy of Sciences) (in Chinese) [王鹏远 2014 博士学位论文(北京: 中科院理化技术研究所)]

  • [1]

    Jing M, Hua D X, Le J 2016 Acta Phys. Sin. 65 070704 (in Chinese) [景敏, 华灯鑫, 乐静 2016 物理学报 65 070704]

    [2]

    Drakaki E, Dessinioti C, Stratigos A J, Salavastru C, Antoniou C 2014 J. Biomed. Opt. 19 030901

    [3]

    Itoh S, Sakakura M, Shimotsuma Y, Miura K 2015 Appl. Phys. B 119 519

    [4]

    Zhang F, Duan J, Zeng X Y, Li X Y 2010 Infrared and Laser Engineering 39 143 (in Chinese) [张菲, 段军, 曾晓雁, 李祥友 2010 红外与激光工程 39 143]

    [5]

    Ryoo K, Kim M, Sung J, Kim K, Kang M 2015 J. Mech. Sci. Technol. 29 365

    [6]

    Bao L D, Han J H, Duan T, Sun N C, Gao X, Feng G Y, Yang L M, Niu R H, Liu Q X 2012 Acta Phys. Sin. 61 197901 (in Chinese) [包凌东, 韩敬华, 段涛, 孙年春, 高翔, 冯国英, 杨李茗, 牛瑞华, 刘全喜 2012 物理学报 61 197901]

    [7]

    Shi L F, Chen Q, Yang P, Li B, Wang Y X, Zhang L J, Ye Y Y 2014 Chinese Journal of Luminescence 35 926 (in Chinese) [史林芳, 陈倩, 杨平, 李兵, 王雨香, 张丽君, 叶媛媛 2014 发光学报 35 926]

    [8]

    Zhao S L, Hou Y B, Xu Z 2006 Chinese Journal of Luminescence 27 191 (in Chinese) [赵谡玲, 侯延冰, 徐征 2006 发光学报 27 191]

    [9]

    Gapontsev V P, Tyrtyshnyy V A, Vershinin O I, Davydov B L, Oulianov D A 2013 Opt. Express 21 3715

    [10]

    Cole B, Hays A, Mcintosh C, Goldberg L 2013 Proc. SPIE 8599 85991L

    [11]

    Liu H, Gong M L 2009 Acta Phys. Sin. 58 7000 (in Chinese) [刘欢, 巩马理 2009 物理学报 58 7000]

    [12]

    Wu Y C, Fu P Z, Wang J X, Xu Z Y, Zhang L, Kong Y F, Chen C T 1997 Opt. Lett. 22 1840

    [13]

    Kitano H, Matsui T, Sato K, Ushiyama N, Yoshimura M, Mori Y, Sasaki T 2003 Opt. Lett. 28 263

    [14]

    Guo L, Wang G L, Zhang H B, Cui D F, Wu Y C, Lu L, Zhang J Y, Huang J Y, Xu Z Y 2007 Appl. Phys. B 88 197

    [15]

    Wu Y C, Chang F, Fu P Z, Chen C T, Wang G L, Geng A C, Bo Y, Cui D F, Xu Z Y 2005 Chin. Phys. Lett. 22 1426

    [16]

    Zhang G C, Liu S S, Huang L X, Zhang G, Wu Y C 2013 Opt. Lett. 38 1594

    [17]

    Wang P Y, Xie S Y, Bo Y, Wang B S, Zuo J W, Wang Z C, Shen Y, Zhang F F, Wei K, Jin K, Xu Y T, Xu J L, Peng Q J, Zhang J Y, Lei W Q, Cui D F, Zhang Y D, Xu Z Y 2014 Chin. Phys. B 23 094208

    [18]

    Wang P Y 2014 Ph. D. Dissertation (Beijing: Technical Institute of Physics and Chemistry, Chinese Academy of Sciences) (in Chinese) [王鹏远 2014 博士学位论文(北京: 中科院理化技术研究所)]

  • [1] Cheng Jia, Wu Ya-Dong, Yan Ri, Peng Xue-Fang, Zhu Ren-Jiang, Wang Tao, Jiang Li-Dan, Tong Cun-Zhu, Song Yan-Rong, Zhang Peng. Tunable ultraviolet laser based on intracavity third harmonic generation of external cavity surface emitting laser. Acta Physica Sinica, 2024, 73(8): 084202. doi: 10.7498/aps.73.20231923
    [2] Shi Liang-Zhu, Zhang Meng, Chu Yu-Xi, Liu Bo-Wen, Hu Ming-Lie. 206 nm deep ultraviolet laser generated from fifth harmonic of femtosecond fiber laser. Acta Physica Sinica, 2023, 72(22): 224209. doi: 10.7498/aps.72.20230877
    [3] Duan Yan-Min, Zhou Yu-Ming, Sun Ying-Lu, Li Zhi-Hong, Zhang Yao-Ju, Wang Hong-Yan, Zhu Hai-Yong. Frequency doubling of acousto-optic Q-switched Nd:YVO4 cascaded Raman laser for narrow pulse-width 657 nm laser. Acta Physica Sinica, 2021, 70(22): 224209. doi: 10.7498/aps.70.20210695
    [4] Tian Long, Wang Qing-Wei, Yao Wen-Xiu, Li Qing-Hui, Wang Ya-Jun, Zheng Yao-Hui. Experimental realization of high-efficiency blue light at 426 nm by external frequency doubling resonator. Acta Physica Sinica, 2020, 69(4): 044201. doi: 10.7498/aps.69.20191417
    [5] Cheng Meng-Yao, Wang Zhao-Hua, He Hui-Jun, Wang Xian-Zhi, Zhu Jiang-Feng, Wei Zhi-Yi. Efficient third harmonic generation of 355 nm picosecond laser pulse. Acta Physica Sinica, 2019, 68(12): 124205. doi: 10.7498/aps.68.20190513
    [6] Liu Chong, Ji Lai-Lin, Zhu Bao-Qiang, Lin Zun-Qi. Numerical simulation analysis of high efficient SFG and color separation in far field in high power laser facility based on noncollinear phase matching by KDP crystal. Acta Physica Sinica, 2016, 65(14): 144202. doi: 10.7498/aps.65.144202
    [7] Liu Shen-Ye, Huang Yi-Xiang, Hu Xin, Zhang Ji-Yan, Yang Guo-Hong, Li Jun, Yi Rong-Qing, Du Hua-Bing, Ding Yong-Kun. Experimental research on X-ray radiation and ablation of an Ag foil targets irradiated by high intensity 2ω0 laser light beam. Acta Physica Sinica, 2013, 62(3): 035202. doi: 10.7498/aps.62.035202
    [8] Wang Yan, Yao Zhi, Feng Chun-Lei, Liu Jia-Hong, Ding Hong-Bin. 355 nm laser photoionization of formaldehyde time-of-flight mass spectroscopic study. Acta Physica Sinica, 2012, 61(1): 013301. doi: 10.7498/aps.61.013301
    [9] Jiang Xiu-Juan, Li Jing-Hui, Li Hua-Gang, Zhou Shen-Lei, Li Yang, Lin Zun-Qi. Smoothing of small on-target spots produced by frequency-tripled beams using lens array and spectral dispersion. Acta Physica Sinica, 2012, 61(12): 124202. doi: 10.7498/aps.61.124202
    [10] Liu Hong-Jie, Zhou Xin-Da, Huang Jin, Wang Feng-Rui, Jiang Xiao-Dong, Huang Jing, Wu Wei-Dong, Zheng Wan-Guo. Comparison of damage between front and rear surfaces under nanosecond 355nm laser irradiation on fused silica. Acta Physica Sinica, 2011, 60(6): 065202. doi: 10.7498/aps.60.065202
    [11] Zhu Bao-Qiang, Dai Ya-Ping, Zhu Jian, Zhan Ting-Yu, Lin Zun-Qi, Ji Lai-Lin, Ma Wei-Xin. The third harmonics generation with large aperture and high fluency. Acta Physica Sinica, 2011, 60(9): 094210. doi: 10.7498/aps.60.094210
    [12] Liu Huan, Gong Ma-Li. Compact LD end-pumped Nd:YAG intracavity frequency-tripled quasi-continuous 355 nm laser. Acta Physica Sinica, 2009, 58(8): 5443-5449. doi: 10.7498/aps.58.5443
    [13] Liu Huan, Gong Ma-Li. Compact laser diode end-pumped Nd:YAG intracavity frequency-tripled quasi-continuous 355 nm laser. Acta Physica Sinica, 2009, 58(10): 7000-7004. doi: 10.7498/aps.58.7000
    [14] Yang Yi-Sheng, Zheng Wan-Guo, Han Wei, Che Ya-Liang, Tan Ji-Chun, Xiang Yong, Jia Huai-Ting. Group-velocity-matching relation in the mixing process of broadband third-harmonic generation. Acta Physica Sinica, 2007, 56(11): 6468-6472. doi: 10.7498/aps.56.6468
    [15] Geng Ai-Cong, Bo Yong, Bi Yong, Sun Zhi-Pei, Yang Xiao-Dong, Lu Yuan-Fu, Chen Ya-Hui, Guo Lin, Wang Gui-Ling, Cui Da-Fu, Xu Zu-Yan. A 3 W continuous-wave 589 nm yellow laser based on the intracavity sum frequency generation in a V-shaped cavity. Acta Physica Sinica, 2006, 55(10): 5227-5231. doi: 10.7498/aps.55.5227
    [16] Zhao Shu-Lin, Zhu Bao-Qiang, Zhan Ting-Yu, Cai Xi-Jie, Liu Ren-Hong, Yang Lin, Zhang Zhi-Xiang, Bi Ji-Jun. Research on pulse shape properties of high-power Nd:glass laser frequency tripling. Acta Physica Sinica, 2006, 55(8): 4170-4175. doi: 10.7498/aps.55.4170
    [17] Liu Yun-Quan, Zhang Jie, Liang Wen-Xi, Wang Zhao-Hua. Theoretical and experimental studies on third harmonic generation of femtosecond Ti:sapphire laser. Acta Physica Sinica, 2005, 54(4): 1593-1598. doi: 10.7498/aps.54.1593
    [18] Tao Zong-Ming, Zhang Yin-Chao, Lü Yong-Hui, Hu Shun-Xing, Shao Shi-Sheng, Cao Kai-Fa, Liu Xiao-Qin, Yue Gu-Ming, Hu Huan-Ling. Effect of stimulated Raman scattering pumped by fourth harmonic Nd:YAG laser in methane and analysis of its physical processes. Acta Physica Sinica, 2004, 53(8): 2589-2594. doi: 10.7498/aps.53.2589
    [19] HE JING-LIANG, LU XING-QIANG, JIA YU-LEI, MAN BAO-YUAN, ZHU SHI-NING, ZHU YONG -YUAN. ALL-SOLID-STATE Nd:YVO4 UV LASER AT 266nm BY FOURTH HARMONIC USING A BBO CRYSTAL. Acta Physica Sinica, 2000, 49(10): 2106-2108. doi: 10.7498/aps.49.2106
    [20] MA HONG-LIANG, SUN KE-XU, YI RONG-QING, CUI YAN-LI, TANG DAO-YUAN, ZHENG ZHI-JIAN. STUDY OF SOFT X-RAY CONVERSION EFFICIENCY FROM FREQUENCY-TRIPLED 0.35μm LASER-IRRADIATED DIFFERENT MATERIAL PLANAR TARGETS. Acta Physica Sinica, 1996, 45(10): 1688-1693. doi: 10.7498/aps.45.1688
Metrics
  • Abstract views:  6423
  • PDF Downloads:  308
  • Cited By: 0
Publishing process
  • Received Date:  26 April 2016
  • Accepted Date:  01 July 2016
  • Published Online:  05 September 2016

/

返回文章
返回