Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Temperature-dependent time response characteristic of photovoltaic performance in planar heterojunction perovskite solar cell

Cao Ru-Nan Xu Fei Zhu Jia-Bin Ge Sheng Wang Wen-Zhen Xu Hai-Tao Xu Run Wu Yang-Lin Ma Zhong-Quan Hong Feng Jiang Zui-Min

Citation:

Temperature-dependent time response characteristic of photovoltaic performance in planar heterojunction perovskite solar cell

Cao Ru-Nan, Xu Fei, Zhu Jia-Bin, Ge Sheng, Wang Wen-Zhen, Xu Hai-Tao, Xu Run, Wu Yang-Lin, Ma Zhong-Quan, Hong Feng, Jiang Zui-Min
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In recent years, perovskite solar cell (PSC) has achieved power conversion efficiency as high as over 20 %, making it competitive with high-efficiency thin film solar cells such as CuInGaSe and CdTe solar cells. However, the critical issue of reliability and stability for PSC should be addressed since a significant degradation of photovoltaic (PV) performance at low temperature has been found regardless of planar mesoporous PSC. To reveal the degradation of PV performance in PSC, the temperature-dependent PV performance of the planar PSC is investigated in detail. A PSC sample is loaded into a cryostat chamber connected to a compressor and illuminated by a halogen lamp. The operating temperature varies from 200 K to 325 K and the current-voltage (J-V) characteristic of planar PSC is measured at different scan rates from 10 V/s to 0.0017 V/s. At a fast scan rate of 10 V/s, the PSC shows a low PV performance at either low temperature or high temperature. The short-circuit current (JSC), open-circuit voltage (VOC) and maximum power point (PMPP) are found to decline with the temperature decrteasing. Moreover, the J-V curve also shows the S-shape characteristic. This suggests that the inefficient transport of photo-generated carriers occurs in the PSC. Ions such as Pb2+, CH3NH3+ and I-vacancies cause the screening effect of built-in field and the photo-generated carriers cannot be separated nor collected efficiently. As a result, JSC and VOC show small values in J-V curves measured at a fast scan rate. However, the degradation in PV performance is temporary. The PV performance gradually reaches a steady state at different operating temperatures with scan rate going down to 0.0017 V/s. The PMPP and VOC increase with temperature decreasing. These results indicate that a long illumination time is necessary for PSC to reach a steady state. After long-time illumination under biased condition (i.e., J-V curves measured at slow scan rate), the built-in field is compensated for by the external bias and the ions piling in the interface regions have enough time to diffuse towards the opposite direction. Thus, the screening effect of built-in field is reduced and the PV performance of PSC reaches a steady state. According to the result of device simulation, the increasing VOC at low temperature is attributed to the enhanced built-in potential difference and the reduced recombination rate of carriers. The temperature-dependent external quantum efficiency measurements of planar PSC before and after light illuminationis are performed to investigate the mechanism of carrier transport. It reveals that the separation and collection efficiencies of photo-generated carriers can be improved significantly after light illumination due to the fact that the screening effect of built-in field is reduced. These findings help understand the carrier transport mechanism in planar PSC.
      Corresponding author: Xu Fei, feixu@staff.shu.edu.cn;runxu@staff.shu.edu.cn ; Xu Run, feixu@staff.shu.edu.cn;runxu@staff.shu.edu.cn
    • Funds: Project supported by the State Key Laboratory of Surface Physics of Fudan University, China (Grant No. KF2015_01) and the National Natural Science Foundation of China (Grant Nos. 61274067, 60876045).
    [1]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088

    [2]

    La-o-vorakiat C, Salim T, Kadro J, Khuc M T, Haselsberger R, Cheng L, Xia H, Gurzadyan G G, Su H, Lam Y M, Marcus R A, Michel-Beyerle M E, Chia E E M 2015 Nat. Commun. 6 7903

    [3]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [4]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [5]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I 2015 Science 348 1234

    [6]

    Zhang H, Qiao X, Shen Y, Moehl T, Zakeeruddin S M, Gratzel M, Wang M 2015 J. Mater. Chem. A 3 11762

    [7]

    Cojocaru L, Uchida S, Sanehira Y, Gonzalez-Pedro V, Bisquert J, Nakazaki J, Kubo T, Segawa H 2015 Chem. Lett. 44 1557

    [8]

    Gottesman R, Haltzi E, Gouda L, Tirosh S, Bouhadana Y, Zaban A, Mosconi E, De Angelis F 2014 J. Phys. Chem. Lett. 5 2662

    [9]

    Ge S, Xu H, Wang W, Cao R, Wu Y, Xu W, Zhu J, Xue F, Hong F, Xu R, Xu F, Wang L, Huang J 2016 Vacuum 128 91

    [10]

    Ono L K, Raga S R, Wang S, Kato Y, Qi Y 2015 J. Mater. Chem. A 3 9074

    [11]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511

    [12]

    Huang J, Wang H, Qi Y, Yu J 2014 Appl. Phys. Lett. 104 203301

    [13]

    Zou Y, Holmes R J 2013 Appl. Phys. Lett. 103 053302

    [14]

    Shi J J, Wei H Y, Zhu L F, Xu X, Xu Y Z, L S T, Wu H J, Luo Y H, Li D M, Meng Q B 2015 Acta Phys. Sin. 64 038402 (in Chinese) [石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波 2015 物理学报 64 038402]

    [15]

    Xiao Z, Yuan Y, Shao Y, Wang Q, Dong Q, Bi C, Sharma P, Gruverman A, Huang J 2015 Nat. Mater. 14 193

    [16]

    Zhao C, Chen B, Qiao X, Luan L, Lu K, Hu B 2015 Adv. Energy Mater. 5 1500279

    [17]

    Wagenpfahl A, Rauh D, Binder M, Deibel C, Dyakonov V 2010 Phys. Rev. B 82 115306

    [18]

    Yuan Y, Xu R, Xu H T, Hong F, Xu F, Wang L J 2015 Chin. Phys. B 24 116302

    [19]

    Yamada Y, Nakamura T, Endo M, Wakamiya A, Kanemitsu Y 2015 IEEE J. Photovoltaics 5 401

    [20]

    Minemoto T, Murata M 2015 Sol. Energy Mater. Sol. Cells 133 8

    [21]

    Liu F, Zhu J, Wei J, Li Y, L M, Yang S, Zhang B, Yao J, Dai S 2014 Appl. Phys. Lett. 104 253508

    [22]

    Rana O, Srivastava R, Grover R, Zulfequar M, Husain M, Kamalasanan M N 2011 Synth. Met. 161 828

    [23]

    Zhao S R, Huang Z P, Sun L, Sun P C, Zhang C J, Wu Y H, Cao H, Wang S L, Zhu J H 2013 Acta Phys. Sin. 62 188801 (in Chinese) [赵守仁, 黄志鹏, 孙雷, 孙朋超, 张传军, 邬云华, 曹鸿, 王善力, 褚君浩 2013 物理学报 62 188801]

    [24]

    Shen Q, Ogomi Y, Chang J, Tsukamoto S, Kukihara K, Oshima T, Osada N, Yoshino K, Katayama K, Toyoda T, Hayase S 2014 Phys. Chem. Chem. Phys. 16 19984

    [25]

    Leijtens T, Srimath Kandada A R, Eperon G E, Grancini G, D'Innocenzo V, Ball J M, Stranks S D, Snaith H J, Petrozza A 2015 J. Am. Chem. Soc. 137 15451

    [26]

    Lai T H, Tsang S W, Manders J R, Chen S, So F 2013 Mater. Today 16 424

    [27]

    Xu L, Lee Y J, Hsu J W P 2014 Appl. Phys. Lett. 105 123904

  • [1]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088

    [2]

    La-o-vorakiat C, Salim T, Kadro J, Khuc M T, Haselsberger R, Cheng L, Xia H, Gurzadyan G G, Su H, Lam Y M, Marcus R A, Michel-Beyerle M E, Chia E E M 2015 Nat. Commun. 6 7903

    [3]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [4]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [5]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I 2015 Science 348 1234

    [6]

    Zhang H, Qiao X, Shen Y, Moehl T, Zakeeruddin S M, Gratzel M, Wang M 2015 J. Mater. Chem. A 3 11762

    [7]

    Cojocaru L, Uchida S, Sanehira Y, Gonzalez-Pedro V, Bisquert J, Nakazaki J, Kubo T, Segawa H 2015 Chem. Lett. 44 1557

    [8]

    Gottesman R, Haltzi E, Gouda L, Tirosh S, Bouhadana Y, Zaban A, Mosconi E, De Angelis F 2014 J. Phys. Chem. Lett. 5 2662

    [9]

    Ge S, Xu H, Wang W, Cao R, Wu Y, Xu W, Zhu J, Xue F, Hong F, Xu R, Xu F, Wang L, Huang J 2016 Vacuum 128 91

    [10]

    Ono L K, Raga S R, Wang S, Kato Y, Qi Y 2015 J. Mater. Chem. A 3 9074

    [11]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511

    [12]

    Huang J, Wang H, Qi Y, Yu J 2014 Appl. Phys. Lett. 104 203301

    [13]

    Zou Y, Holmes R J 2013 Appl. Phys. Lett. 103 053302

    [14]

    Shi J J, Wei H Y, Zhu L F, Xu X, Xu Y Z, L S T, Wu H J, Luo Y H, Li D M, Meng Q B 2015 Acta Phys. Sin. 64 038402 (in Chinese) [石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波 2015 物理学报 64 038402]

    [15]

    Xiao Z, Yuan Y, Shao Y, Wang Q, Dong Q, Bi C, Sharma P, Gruverman A, Huang J 2015 Nat. Mater. 14 193

    [16]

    Zhao C, Chen B, Qiao X, Luan L, Lu K, Hu B 2015 Adv. Energy Mater. 5 1500279

    [17]

    Wagenpfahl A, Rauh D, Binder M, Deibel C, Dyakonov V 2010 Phys. Rev. B 82 115306

    [18]

    Yuan Y, Xu R, Xu H T, Hong F, Xu F, Wang L J 2015 Chin. Phys. B 24 116302

    [19]

    Yamada Y, Nakamura T, Endo M, Wakamiya A, Kanemitsu Y 2015 IEEE J. Photovoltaics 5 401

    [20]

    Minemoto T, Murata M 2015 Sol. Energy Mater. Sol. Cells 133 8

    [21]

    Liu F, Zhu J, Wei J, Li Y, L M, Yang S, Zhang B, Yao J, Dai S 2014 Appl. Phys. Lett. 104 253508

    [22]

    Rana O, Srivastava R, Grover R, Zulfequar M, Husain M, Kamalasanan M N 2011 Synth. Met. 161 828

    [23]

    Zhao S R, Huang Z P, Sun L, Sun P C, Zhang C J, Wu Y H, Cao H, Wang S L, Zhu J H 2013 Acta Phys. Sin. 62 188801 (in Chinese) [赵守仁, 黄志鹏, 孙雷, 孙朋超, 张传军, 邬云华, 曹鸿, 王善力, 褚君浩 2013 物理学报 62 188801]

    [24]

    Shen Q, Ogomi Y, Chang J, Tsukamoto S, Kukihara K, Oshima T, Osada N, Yoshino K, Katayama K, Toyoda T, Hayase S 2014 Phys. Chem. Chem. Phys. 16 19984

    [25]

    Leijtens T, Srimath Kandada A R, Eperon G E, Grancini G, D'Innocenzo V, Ball J M, Stranks S D, Snaith H J, Petrozza A 2015 J. Am. Chem. Soc. 137 15451

    [26]

    Lai T H, Tsang S W, Manders J R, Chen S, So F 2013 Mater. Today 16 424

    [27]

    Xu L, Lee Y J, Hsu J W P 2014 Appl. Phys. Lett. 105 123904

  • [1] Luo Pan, Li Xiang, Sun Xue-Yin, Tan Xiao-Hong, Luo Jun, Zhen Liang. Effect of electron irradiation on perovskite films and devices for novel space solar cells. Acta Physica Sinica, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [2] Wang Hui, Zheng De-Xu, Jiang Xiao, Cao Yue-Xian, Du Min-Yong, Wang Kai, Liu Sheng-Zhong, Zhang Chun-Fu. Fabrication of high-performance flexible perovskite solar cells based on synergistic passivation strategy. Acta Physica Sinica, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [3] Yang Mei-Li, Zou Li, Cheng Jia-Jie, Wang Jia-Ming, Jiang Yu-Fan, Hao Hui-Ying, Xing Jie, Liu Hao, Fan Zhen-Jun, Dong Jing-Jing. Improvement of performance of CsPbBr3 perovskite solar cells by polyvinylidene fluoride additive. Acta Physica Sinica, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [4] Li Pei, Xu Jie, He Chao-Hui, Liu Jia-Xin. Experimental study on irradiation of perovskite solar cells. Acta Physica Sinica, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [5] Zhu Yong-Qi, Liu Yu-Xue, Shi Yang, Wu Cong-Cong. High performance perovskite solar cells synthesized by dissolving FAPbI3 single crystal. Acta Physica Sinica, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [6] Luo Yuan, Zhu Cong-Tan, Ma Shu-Peng, Zhu Liu, Guo Xue-Yi, Yang Ying. Low-temperature preparation of SnO2 electron transport layer for perovskite solar cells. Acta Physica Sinica, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [7] Wang Cheng-Lin, Zhang Zuo-Lin, Zhu Yun-Fei, Zhao Xue-Fan, Song Hong-Wei, Chen Cong. Progress of defect and defect passivation in perovskite solar cells. Acta Physica Sinica, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [8] Zhou Yang, Ren Xin-Gang, Yan Ye-Qiang, Ren Hao, Du Hong-Mei, Cai Xue-Yuan, Huang Zhi-Xiang. Physical mechanism of perovskite solar cell based on double electron transport layer. Acta Physica Sinica, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [9] Wang Jian-Tao, Xiao Wen-Bo, Xia Qing-Gan, Wu Hua-Ming, Li Fan, Huang Le. Influence of back electrode material, structure and thickness on performance of perovskite solar cells. Acta Physica Sinica, 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [10] Wang Pei-Pei, Zhang Chen-Xi, Hu Li-Na, Li Shi-Qi, Ren Wei-Hua, Hao Yu-Ying. Research progress of inverted planar perovskite solar cells based on nickel oxide as hole transport layer. Acta Physica Sinica, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [11] Yan Jia-Hao, Chen Si-Xuan, Yang Jian-Bin, Dong Jing-Jing. Improving efficiency and stability of organic-inorganic hybrid perovskite solar cells by absorption layer ion doping. Acta Physica Sinica, 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [12] Wang Yan-Bo, Cui Dan-Yu, Zhang Cai-Yi, Han Li-Yuan, Yang Xu-Dong. Recent advances in perovskite solar cells: Space potential and optoelectronic conversion mechanism. Acta Physica Sinica, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [13] Wang Ji-Fei, Lin Dong-Xu, Yuan Yong-Bo. Recent progress of ion migration in organometal halide perovskite. Acta Physica Sinica, 2019, 68(15): 158801. doi: 10.7498/aps.68.20190853
    [14] Fan Wei-Li, Yang Zong-Lin, Zhang Zhen-Yun, Qi Jun-Jie. Preparation and performance of high-efficient hole-transport-material-free carbon based perovskite solar cells. Acta Physica Sinica, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [15] Yang Ying-Guo, Yin Guang-Zhi, Feng Shang-Lei, Li Meng, Ji Geng-Wu, Song Fei, Wen Wen, Gao Xing-Yu. An in-situ real time study of the perovskite film micro-structural evolution in a humid environment by using synchrotron based characterization technique. Acta Physica Sinica, 2017, 66(1): 018401. doi: 10.7498/aps.66.018401
    [16] Chai Lei, Zhong Min. Recent research progress in perovskite solar cells. Acta Physica Sinica, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [17] Song Zhi-Hao, Wang Shi-Rong, Xiao Yin, Li Xiang-Gao. Progress of research on new hole transporting materials used in perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [18] Ting Hung-Kit, Ni Lu, Ma Sheng-Bo, Ma Ying-Zhuang, Xiao Li-Xin, Chen Zhi-Jian. progress in electron-transport materials in application of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [19] Shi Jiang-Jian, Wei Hui-Yun, Zhu Li-Feng, Xu Xin, Xu Yu-Zhuan, Lü Song-Tao, Wu Hui-Jue, Luo Yan-Hong, Li Dong-Mei, Meng Qing-Bo. S-shaped current-voltage characteristics in perovskite solar cell. Acta Physica Sinica, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
    [20] Ding Mei-Bin, Lou Chao-Gang, Wang Qi-Long, Sun Qiang. Influence of quantum wells on the quantum efficiency of GaAs solar cells. Acta Physica Sinica, 2014, 63(19): 198502. doi: 10.7498/aps.63.198502
Metrics
  • Abstract views:  6374
  • PDF Downloads:  414
  • Cited By: 0
Publishing process
  • Received Date:  27 March 2016
  • Accepted Date:  26 May 2016
  • Published Online:  05 September 2016

/

返回文章
返回