Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Coherent optical propagation properties and ultrahigh resolution mass sensing based on double whispering gallery modes cavity optomechanics

Chen Hua-Jun Fang Xian-Wen Chen Chang-Zhao Li Yang

Citation:

Coherent optical propagation properties and ultrahigh resolution mass sensing based on double whispering gallery modes cavity optomechanics

Chen Hua-Jun, Fang Xian-Wen, Chen Chang-Zhao, Li Yang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Whispering gallery mode (WGM) cavities due to their high quality factors, small mode volumes, and simple fabrications, have potential applications in photonic devices and ultrasensitive mass sensing. Cavity optomechanic systems based on WGM cavities have progressed enormously in recent years due to the fact that they reveal and explore fundamental quantum physics and pave the way for potential applications of optomechanical devices. However, WGM based cavity optomechanics still lies in a single optical mode coupled to a single mechanical mode. Here in this paper, in order to reveal more quantum phenomena and realize remarkable applications, we present a typical multimode cavity optomechanical system composed of two WGM cavities, of which one WGM cavity is an optomechanical cavity driven by a pump laser and a probe laser and the other cavity is an ordinary WGM cavity only driven with a pump laser. The two WGM cavities are coupled with each other via exchanging energy, and the coupling strength depends on the distance between the two cavities. With the standard method of quantum optics and the quantum Langevin equations, the coherent optical spectra are derived. The coherent optical propagation properties and the phenomenon of optomechanically induced transparency based slow-light effect are demonstrated theoretically via manipulating the coupling strength of the two cavities. The results based on the two-WGM cavity optomechanical system are also compared with those based on the single cavity optomechanical system, and the results indicate that the cavity-cavity coupling plays a key role in the system, which indicates a quantum channel, and influences the width of the transparency window. We further theoretically propose a mass sensor based on the double WGM cavity optomechanical system. To implement mass sensing, the first step is to determine the original frequency of the resonator. With adjusting the detuning parameters and the cavity-cavity coupling strength, a straightforward method to measure the resonance frequency of the WGM optomechanical resonator is proposed. The resonance frequency of the mechanical resonator can be determined from the probe transmission spectrum, and the coupling strength between the two cavities will enhance both the line width and the intensity, which will be beneficial to implementing mass sensing. The mass of external nanoparticles deposited onto the WGM optomechanical cavity can be measured conveniently by tracking the mechanical resonance frequency shifts due to the fact that mass changes in the probe transmission spectrum. Compared with those of single-cavity optomechanical mass sensors, the mass sensitivity and resolution are improved significantly due to the cavity-cavity coupling. This double WGM cavity optomechanical system provides a new platform for exploring the on-chip applications in optical storage and ultrahigh resolution sensing devices.
      Corresponding author: Chen Hua-Jun, chenphysics@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11404005, 51502005, 61272153, 61572035).
    [1]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391

    [2]

    Chen H J, Mi X W 2011 Acta Phys. Sin. 60 124206 (in Chinese) [陈华俊, 米贤武2011物理学报60 124206]

    [3]

    Yan X B, Yang L, Tian X D, Liu Y M, Zhang Y 2014 Acta Phys. Sin. 63 204201 (in Chinese) [严晓波, 杨柳, 田雪冬, 刘一谋, 张岩2014物理学报63 204201]

    [4]

    Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2015 Acta Phys. Sin. 64 164211 (in Chinese) [陈雪, 刘晓威, 张可烨, 袁春华, 张卫平2015物理学报64 164211]

    [5]

    Balram K C, Davanco M, Song J D, Srinivasan K 2016 Nat. Photon. 10 346

    [6]

    O'Connell A D, Hofheinz M, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis J M, Cleland A N 2010 Nature 464 697

    [7]

    Chan J, Alegre T P M, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M, Painter O 2011 Nature 478 89

    [8]

    Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W, Simmonds R W 2011 Nature 475 359

    [9]

    Agarwal G S, Huang S M 2010 Phys. Rev. A 81 041803

    [10]

    Weis S, Riviere R, Deleglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520

    [11]

    Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D, Simmonds R W 2011 Nature 471 204

    [12]

    Safavi-Naeini A H, Mayer Alegre T P, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69

    [13]

    Fiore V, Yang Y, Kuzyk M C, Barbour R, Tian L, Wang H 2011 Phys. Rev. Lett. 107 133601

    [14]

    Zhou X, Hocke F, Schliesser A, Marx A, Huebl H, Gross R, Kippenberg T J 2013 Nat. Phys. 9 179

    [15]

    Clark J B, Lecocq F, Simmonds R W, Aumentado J, Teufel J D 2016 Nat. Phys. doi:10.1038/nphys3701

    [16]

    Safavi-Naeini A H, Gröblacher S, Hill J T, Chan J, Aspelmeyer M, Painter O 2013 Nature 500 185

    [17]

    Wollman E E, Lei C U, Weinstein A J, Suh J, Kronwald A, Marquardt F, Clerk A A, Schwab K C 2015 Science 349 952

    [18]

    Gavartin E, Verlot P, Kippenberg T J 2012 Nat. Nanotech. 7 509

    [19]

    Wu M, Hryciw A C, Healey C, Lake D P, Jayakumar H, Freeman M R, Davis J P, Barclay P E 2014 Phys. Rev. X 4 021052

    [20]

    Krause A G, Winger M, Blasius T D, Lin Q, Painter O 2012 Nat. Photon. 6 768

    [21]

    Li J J, Zhu K D 2013 Phys. Rep. 525 223

    [22]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [23]

    Massel F, Heikkila T T, Pirkkalainen J M, Cho S U, Saloniemi H, Hakonen P J, Sillanpaa M A 2011 Nature 480 351

    [24]

    Jiang C, Chen B, Zhu K D 2011 Europhys. Lett. 94 38002

    [25]

    Basiri-Esfahani S, Akram U, Milburn G J 2012 New J. Phys. 14 085017

    [26]

    He W, Li J J, Zhu K D 2010 Opt. Lett. 35 339

    [27]

    Zhang J Q, Li Y, Feng M, Xu Y 2012 Phys. Rev. A 86 053806

    [28]

    Hill J T, Safavi-Naeini A H, Chan J, Painter O 2012 Nat. Commun. 3 1196

    [29]

    Liu Y C, Xiao Y F, Luan X, Gong Q, Wong C W 2015 Phys. Rev. A 91 033818

    [30]

    Barzanjeh S, Abdi M, Milburn G J, Tombesi P, Vitali D 2012 Phys. Rev. Lett. 109 130503

    [31]

    Massel F, Cho S U, Pirkkalainen J M, Hakonen P J, Heikkila T T, Sillanpaa M A 2012 Nat. Commun. 3 987

    [32]

    Wang Y D, Clerk A A 2012 Phys. Rev. Lett. 108 153603

    [33]

    Guo Y, Li K, Nie W, Li Y 2014 Phys. Rev. A 90 053841

    [34]

    Liu Y C, Xiao, Y F, Luan X S, Chee W W 2015 Sci. China: Physics, Mechanics & Astronomy 58 050305

    [35]

    Liu Y C, Hu Y W, Wong C W, Xiao Y F 2013 Chin. Phys. B 22 114213

    [36]

    Dong C, Fiore V, Kuzyk M C, Wang H 2012 Science 338 1609

    [37]

    Qu K, Agarwal G S 2013 Phys. Rev. A 87 031802

    [38]

    Liu F, Alaie S, Leseman Z S, Hossein-Zadeh M 2013 Opt. Express 21 19555

    [39]

    Shao L, Jiang X F, Yu X C, Li B B, Clements W R, Vollmer F, Wang W, Xiao Y F, Gong Q 2013 Adv. Mater. 25 5616

    [40]

    Ekinci K L, Yang Y T, Roukes M L 2004 J. Appl. Phys. 95 2682

    [41]

    Chaste J, Eichler A, Moser J, Ceballos G, Rurali R, Bachtold A 2012 Nat. Nanotechnol. 301 861

    [42]

    Kolkowitz S, Jayich A C, Unterreithmeier Q P, Bennett S D, Rabl P, Harris J G, Lukin M D 2012 Science 335 1603

    [43]

    Li J J, Zhu K D 2011 Phys. Rev. B 83 245421

    [44]

    Peng B, Ozdemir S K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M, Yang L 2014 Nat. Phys. 10 394

    [45]

    Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G, Xiao M 2014 Nat. Photon. 8 524

    [46]

    Jing H, Ozdemir S K, Lu X Y, Zhang J, Yang L, Nori F 2014 Phys. Rev. Lett. 113 053604

    [47]

    Schliesser A, Arcizet O, Riviere R, Anetsberger G, Kippenberg T J 2009 Nat. Phys. 5 509

    [48]

    Boyd R W 2010 Nonlinear Optics (3nd Ed.) (San Diego, California: Academic) p315

    [49]

    Gardiner C W, Zoller P 2000 Quantum Noise (2nd Ed.) (Berlin: Springer) p 425

    [50]

    Zhu J, Ozdemir S K, Xiao Y F, Li L, He L, Chen D, Yang L 2010 Nat. Photon. 4 46

    [51]

    Yi X, Xiao Y F, Liu Y C, Li B B, Chen Y L, Li Y, Gong Q 2011 Phys. Rev. A 83 023803

    [52]

    Ekinci K L, Yang Y T, Roukes M L 2004 J. Appl. Phys. 95 2682

    [53]

    Chen B, Jiang C, Zhu K D 2011 Phys. Rev. A 83 055803

    [54]

    Jiang C, Liu H, Cui Y, Li X, Chen G, Chen B 2013 Opt. Express 21 12165

    [55]

    Jiang C, Cui Y, Zhu K D 2014 Opt. Express 22 13773

    [56]

    Yie Z, Zielke M A, Burgner C B, Turner K L 2011 J. Micromech. Microeng. 21 025027

  • [1]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391

    [2]

    Chen H J, Mi X W 2011 Acta Phys. Sin. 60 124206 (in Chinese) [陈华俊, 米贤武2011物理学报60 124206]

    [3]

    Yan X B, Yang L, Tian X D, Liu Y M, Zhang Y 2014 Acta Phys. Sin. 63 204201 (in Chinese) [严晓波, 杨柳, 田雪冬, 刘一谋, 张岩2014物理学报63 204201]

    [4]

    Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2015 Acta Phys. Sin. 64 164211 (in Chinese) [陈雪, 刘晓威, 张可烨, 袁春华, 张卫平2015物理学报64 164211]

    [5]

    Balram K C, Davanco M, Song J D, Srinivasan K 2016 Nat. Photon. 10 346

    [6]

    O'Connell A D, Hofheinz M, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis J M, Cleland A N 2010 Nature 464 697

    [7]

    Chan J, Alegre T P M, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M, Painter O 2011 Nature 478 89

    [8]

    Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W, Simmonds R W 2011 Nature 475 359

    [9]

    Agarwal G S, Huang S M 2010 Phys. Rev. A 81 041803

    [10]

    Weis S, Riviere R, Deleglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520

    [11]

    Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D, Simmonds R W 2011 Nature 471 204

    [12]

    Safavi-Naeini A H, Mayer Alegre T P, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69

    [13]

    Fiore V, Yang Y, Kuzyk M C, Barbour R, Tian L, Wang H 2011 Phys. Rev. Lett. 107 133601

    [14]

    Zhou X, Hocke F, Schliesser A, Marx A, Huebl H, Gross R, Kippenberg T J 2013 Nat. Phys. 9 179

    [15]

    Clark J B, Lecocq F, Simmonds R W, Aumentado J, Teufel J D 2016 Nat. Phys. doi:10.1038/nphys3701

    [16]

    Safavi-Naeini A H, Gröblacher S, Hill J T, Chan J, Aspelmeyer M, Painter O 2013 Nature 500 185

    [17]

    Wollman E E, Lei C U, Weinstein A J, Suh J, Kronwald A, Marquardt F, Clerk A A, Schwab K C 2015 Science 349 952

    [18]

    Gavartin E, Verlot P, Kippenberg T J 2012 Nat. Nanotech. 7 509

    [19]

    Wu M, Hryciw A C, Healey C, Lake D P, Jayakumar H, Freeman M R, Davis J P, Barclay P E 2014 Phys. Rev. X 4 021052

    [20]

    Krause A G, Winger M, Blasius T D, Lin Q, Painter O 2012 Nat. Photon. 6 768

    [21]

    Li J J, Zhu K D 2013 Phys. Rep. 525 223

    [22]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [23]

    Massel F, Heikkila T T, Pirkkalainen J M, Cho S U, Saloniemi H, Hakonen P J, Sillanpaa M A 2011 Nature 480 351

    [24]

    Jiang C, Chen B, Zhu K D 2011 Europhys. Lett. 94 38002

    [25]

    Basiri-Esfahani S, Akram U, Milburn G J 2012 New J. Phys. 14 085017

    [26]

    He W, Li J J, Zhu K D 2010 Opt. Lett. 35 339

    [27]

    Zhang J Q, Li Y, Feng M, Xu Y 2012 Phys. Rev. A 86 053806

    [28]

    Hill J T, Safavi-Naeini A H, Chan J, Painter O 2012 Nat. Commun. 3 1196

    [29]

    Liu Y C, Xiao Y F, Luan X, Gong Q, Wong C W 2015 Phys. Rev. A 91 033818

    [30]

    Barzanjeh S, Abdi M, Milburn G J, Tombesi P, Vitali D 2012 Phys. Rev. Lett. 109 130503

    [31]

    Massel F, Cho S U, Pirkkalainen J M, Hakonen P J, Heikkila T T, Sillanpaa M A 2012 Nat. Commun. 3 987

    [32]

    Wang Y D, Clerk A A 2012 Phys. Rev. Lett. 108 153603

    [33]

    Guo Y, Li K, Nie W, Li Y 2014 Phys. Rev. A 90 053841

    [34]

    Liu Y C, Xiao, Y F, Luan X S, Chee W W 2015 Sci. China: Physics, Mechanics & Astronomy 58 050305

    [35]

    Liu Y C, Hu Y W, Wong C W, Xiao Y F 2013 Chin. Phys. B 22 114213

    [36]

    Dong C, Fiore V, Kuzyk M C, Wang H 2012 Science 338 1609

    [37]

    Qu K, Agarwal G S 2013 Phys. Rev. A 87 031802

    [38]

    Liu F, Alaie S, Leseman Z S, Hossein-Zadeh M 2013 Opt. Express 21 19555

    [39]

    Shao L, Jiang X F, Yu X C, Li B B, Clements W R, Vollmer F, Wang W, Xiao Y F, Gong Q 2013 Adv. Mater. 25 5616

    [40]

    Ekinci K L, Yang Y T, Roukes M L 2004 J. Appl. Phys. 95 2682

    [41]

    Chaste J, Eichler A, Moser J, Ceballos G, Rurali R, Bachtold A 2012 Nat. Nanotechnol. 301 861

    [42]

    Kolkowitz S, Jayich A C, Unterreithmeier Q P, Bennett S D, Rabl P, Harris J G, Lukin M D 2012 Science 335 1603

    [43]

    Li J J, Zhu K D 2011 Phys. Rev. B 83 245421

    [44]

    Peng B, Ozdemir S K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M, Yang L 2014 Nat. Phys. 10 394

    [45]

    Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G, Xiao M 2014 Nat. Photon. 8 524

    [46]

    Jing H, Ozdemir S K, Lu X Y, Zhang J, Yang L, Nori F 2014 Phys. Rev. Lett. 113 053604

    [47]

    Schliesser A, Arcizet O, Riviere R, Anetsberger G, Kippenberg T J 2009 Nat. Phys. 5 509

    [48]

    Boyd R W 2010 Nonlinear Optics (3nd Ed.) (San Diego, California: Academic) p315

    [49]

    Gardiner C W, Zoller P 2000 Quantum Noise (2nd Ed.) (Berlin: Springer) p 425

    [50]

    Zhu J, Ozdemir S K, Xiao Y F, Li L, He L, Chen D, Yang L 2010 Nat. Photon. 4 46

    [51]

    Yi X, Xiao Y F, Liu Y C, Li B B, Chen Y L, Li Y, Gong Q 2011 Phys. Rev. A 83 023803

    [52]

    Ekinci K L, Yang Y T, Roukes M L 2004 J. Appl. Phys. 95 2682

    [53]

    Chen B, Jiang C, Zhu K D 2011 Phys. Rev. A 83 055803

    [54]

    Jiang C, Liu H, Cui Y, Li X, Chen G, Chen B 2013 Opt. Express 21 12165

    [55]

    Jiang C, Cui Y, Zhu K D 2014 Opt. Express 22 13773

    [56]

    Yie Z, Zielke M A, Burgner C B, Turner K L 2011 J. Micromech. Microeng. 21 025027

  • [1] Wang Xin, Ren Fei-Fan, Han Song, Han Hai-Yan, Yan Dong. Perfect optomechanically induced transparency and slow light in an Rydberg atom-assisted optomechanical system. Acta Physica Sinica, 2023, 72(9): 094203. doi: 10.7498/aps.72.20222264
    [2] Xie Bao-Hao, Chen Hua-Jun, Sun Yi. Slow light effect caused by optomechanically induced transparency in multimode optomechanical system. Acta Physica Sinica, 2023, 72(15): 154203. doi: 10.7498/aps.72.20230663
    [3] Zhu Zi-Hao, Gao You-Kang, Zeng Yan, Cheng Zheng, Ma Hong-Hua, Yi Xu-Nong. Three-band plasmon induced transparency effect based on four-disk resonator coupled waveguide system. Acta Physica Sinica, 2022, 71(24): 244201. doi: 10.7498/aps.71.20221397
    [4] Chen Hua-Jun. Nonlinear optical effect and nonlinear optical mass sensor based on graphene optomechanical system. Acta Physica Sinica, 2020, 69(13): 134203. doi: 10.7498/aps.69.20191745
    [5] Yang Jian-Yong, Chen Hua-Jun. All-optical mass sensing based on ultra-strong coupling quantum dot-nanomechanical resonator system. Acta Physica Sinica, 2019, 68(24): 246302. doi: 10.7498/aps.68.20190607
    [6] Zhang Li-Wei, Li Xian-Li, Yang Liu. Optical nonreciprocity with blue-detuned driving in two-cavity optomechanics. Acta Physica Sinica, 2019, 68(17): 170701. doi: 10.7498/aps.68.20190205
    [7] Zhang Xiu-Long, Bao Qian-Qian, Yang Ming-Zhu, Tian Xue-Song. Entanglement characteristics of output optical fields in double-cavity optomechanics. Acta Physica Sinica, 2018, 67(10): 104203. doi: 10.7498/aps.67.20172467
    [8] Chen Xue, Liu Xiao-Wei, Zhang Ke-Ye, Yuan Chun-Hua, Zhang Wei-Ping. Quantum measurement with cavity optomechanical systems. Acta Physica Sinica, 2015, 64(16): 164211. doi: 10.7498/aps.64.164211
    [9] Zhao Jian-Peng, Luo Bin, Pan Wei, Yan Lian-Shan, Zhu Hong-Na, Zou Xi-Hua, Ye Jia. Characteristics of the slow and fast light in the band-edge of gain spectrum of the fiber-optic parametric amplification. Acta Physica Sinica, 2014, 63(4): 044203. doi: 10.7498/aps.63.044203
    [10] Wei Wei, Zhang Xia, Yu Hui, Li Yu-Peng, Zhang Yang-An, Huang Yong-Qing, Chen Wei, Luo Wen-Yong, Ren Xiao-Min. Slow light based on stimulated Brillouin scattering in microstructured fiber. Acta Physica Sinica, 2013, 62(18): 184208. doi: 10.7498/aps.62.184208
    [11] Qiu Wei, Gao Bo, Lin Peng, Zhou Jing-Ting, Li Jia, Jiang Qiu-Li, Lü Pin, Ma Ying-Chi. Study on the relationship between the population of metastable state and time delay in an erbium-doped optical fiber. Acta Physica Sinica, 2013, 62(21): 214205. doi: 10.7498/aps.62.214205
    [12] Zheng Di, Pan Wei. Feasibility study of nonlinear optical loop mirror in the cascaded stimwlated Brillouin scatteving-based slow light system. Acta Physica Sinica, 2011, 60(6): 064210. doi: 10.7498/aps.60.064210
    [13] Zhang Jing, Zhang Yun-Dong, Zhang Xue-Nan, Yu Bo, Wang Jin-Fang, Wang Nan, Tian He, Yuan Ping. Characteristics of subluminal for optical resonators. Acta Physica Sinica, 2011, 60(2): 024218. doi: 10.7498/aps.60.024218
    [14] Yin Jing-Chan, Xiao Xiao-Sheng, Yang Chang-Xi. Experimental study of slow light based on four-wave mixing wavelength conversion and dispersion in optical fibers. Acta Physica Sinica, 2010, 59(6): 3986-3991. doi: 10.7498/aps.59.3986
    [15] Zhang Zhi-Yao, Zhou Xiao-Jun, Shi Sheng-Hui, Liang Rui. Analysis of pulse distortion in Brillouin slow light using broadband pump with rectangular spectrum. Acta Physica Sinica, 2010, 59(7): 4694-4700. doi: 10.7498/aps.59.4694
    [16] Wang Nan, Zhang Yun-Dong, Wang Jin-Fang, Tian He, Wang Hao, Zhang Xue-Nan, Zhang Jing, Yuan Ping. Research on CRIT property in ring-in-ring structure resonator. Acta Physica Sinica, 2009, 58(11): 7672-7679. doi: 10.7498/aps.58.7672
    [17] Wang Shi-He, Ren Li-Yong, Liu Yu. Theoretical study on stimulated-Brillouin-scattering gain-spectrum broadening and pulse-distortion reduction of slow-light propagation using double broadband pump in optical fibers. Acta Physica Sinica, 2009, 58(6): 3943-3948. doi: 10.7498/aps.58.3943
    [18] Lu Hui, Tian Hui-Ping, Li Chang-Hong, Ji Yue-Feng. Research on new type of slow light structure based on 2D photonic crystal coupled cavity waveguide. Acta Physica Sinica, 2009, 58(3): 2049-2055. doi: 10.7498/aps.58.2049
    [19] Du Xiao-Yu, Zheng Wan-Hua, Zhang Ye-Jin, Ren Gang, Wang Ke, Xing Ming-Xin, Chen Liang-Hui. High transmission of slow light in the photonic crystal waveguide bends. Acta Physica Sinica, 2008, 57(11): 7005-7011. doi: 10.7498/aps.57.7005
    [20] Controllable group velocity of light pulse in erbium-doped optical fiber at room temperature. Acta Physica Sinica, 2007, 56(12): 7009-7014. doi: 10.7498/aps.56.7009
Metrics
  • Abstract views:  5043
  • PDF Downloads:  360
  • Cited By: 0
Publishing process
  • Received Date:  11 April 2016
  • Accepted Date:  08 July 2016
  • Published Online:  05 October 2016

/

返回文章
返回