Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental research on the dispersion property of hollow core photonic bandgap fiber

Wang Xin Lou Shu-Qin Lian Zheng-Gang

Citation:

Experimental research on the dispersion property of hollow core photonic bandgap fiber

Wang Xin, Lou Shu-Qin, Lian Zheng-Gang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Due to the unique optical properties of low loss, low nonlinearity, high threshold and low latency, hollow core bandgap fibers are endowed with high expectations in the field of high power delivery, optical fiber communication, nonlinear optics, fiber sensors, etc. Fiber dispersion, as one of the basic transmission characteristics of optical fiber, makes the light pulse broadened during transmission, thus has adverse effects on high power pulse transmission system and high speed optical communication system. Therefore, it is significant to study the dispersion characteristics of the hollow core bandgap fiber for its applications in the field of high power pulse transmission and high speed communications. Because of the simple structure of measurement system, low cost, high accuracy and relatively short length of fiber (just needing a few meters long), interferometric technique is suitable for dispersion measurement of hollow core photonic bandgap fiber. The key to obtaining the dispersion results with interferometric technique is the phase extractiton from the interferogram. In order to meet the requirements of hollow core bandgap fiber for wide bandwidth, high efficiency and high accuracy dispersion measurement, a novel phase extraction method based on interferometry is proposed in this paper, by which the precision of dispersion measurement is improved through using the whole data-set in the interferogram. Combining with the determinations of the peak and center of symmetry points, the extraction of phase information can be implemented directly from the interferogram. The experimental results of measuring a standard single mode fiber indicate that the difference between the experimental measurement and theoretical simulation is just 0.6 psnm-1km-1, which proves that this proposed method possesses high accuracy and is suitable for the measurement of hollow core bandgap fiber. Consequently, according to the proposed phase extraction method, the measurement system based on Mach-Zehnder interferometer is set up and the dispersion measurement of a 19 cell hollow core bandgap fiber with a core diameter of 26 m is carried out. Experimental results indicate that the fundamental mode dispersion curve of the 19 cell hollow core photonic bandgap fiber in a wavelength range from 1400 nm to 1630 nm can be obtained. Moreover, four high order mode dispersion curves are obtained for the first time. The measurement results are in accordance with the simulation results. These findings are of significant importance for exploring the dispersion characteristics of hollow core photonic bandgap fibers, and also conducible to their applications in the fields of high power laser delivery, high capacity data communications, optical fiber nonlinear, etc.
      Corresponding author: Lou Shu-Qin, shqlou@bjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475016, U1431119).
    [1]

    Shephard J D, Jones J D C, Hand D P, Bouwmans G, Knight J C, Russell P S J, Mangan B J 2004 Opt. Express 12 717

    [2]

    Jones D C, Bennett C R, Smith M A, Scott A M 2014 Opt. Lett. 39 3122

    [3]

    Sleiffer V, Jung Y M, Baddela N K, Surof J, Kuschnerov M, Veljanovski V, Hayes J R, Wheeler N V, Fokoua E N, Wooler J P 2014 J. Lightwave Technol. 32 854

    [4]

    Poletti F, Wheeler N V, Petrovich M N, Baddela N, Fokoua E N, Hayes J R, Gray D R, Li Z, Slavík R, Richardson D J 2013 Nature Photon. 7 279

    [5]

    Petrovich M N, Wheeler N V, Heidt A M, Baddela N K, Sandoghchi S R, Chen Y, Poletti F, Richardson D J 2014 16th International Conference on Transparent Optical Networks (ICTON), Graz, Austria, July 6-102014 We. A6.2

    [6]

    Terrel M A, Digonnet M J F, Fan S H 2012 J. Lightwave Technol. 30 931

    [7]

    Rothhardt J, Hörich S, Carstens H, Herrick N, Demmler S, Limpert J, Tnnermann A 2011 Opt. Lett. 36 4605

    [8]

    Joly N Y, Nold J, Chang W, Hölzer P, Nazarkin A, Wong G K, Biancalana F, Russell P S J 2011 Phys. Rev. Lett. 106 203901

    [9]

    Roberts P J, Couny F, Sabert H, Mangan B J, Williams D P, Farr L, Mason M W, Tomlinson A, Birks T A, Knight J C 2005 Opt. Express 13 236

    [10]

    West J A, Smith C M, Borrelli N F, Allan D C, Koch K W 2004 Opt. Express 12 1485

    [11]

    Petrovich M N, Poletti F, Wooler J P, Heidt A M, Baddela N K, Li Z, Gray D R, Slavík R, Parmigiani F, Wheeler N V 2013 Opt. Express 21 28559

    [12]

    Cregan R F, Mangan B J, Knight J C, Birks T A, Russell P S J, Roberts P J, Allan D C 1999 Science 285 1537

    [13]

    Cohen L G, Lin C 1977 Appl. Opt. 16 3136

    [14]

    Costa B, Mazzoni D, Puleo M, Vezzoni E 1982 IEEE J. Quantum Electron. 18 1509

    [15]

    Stone J, Marcuse D 1984 Electron. Lett. 20 751

    [16]

    Chang C C, Weiner A M 1997 IEEE J. Quantum Electron. 33 1455

    [17]

    Koch E, Chernikov S V, Taylor J R 2000 IEEE Photon. Technol. Lett. 12 864

    [18]

    Merritt P, Tatam R P, Jackson D A 1989 J. Lightwave Technol. 7 703

    [19]

    Lu P, Ding H M, Mihailov S J 2005 Meas. Sci. Technol. 16 1631

  • [1]

    Shephard J D, Jones J D C, Hand D P, Bouwmans G, Knight J C, Russell P S J, Mangan B J 2004 Opt. Express 12 717

    [2]

    Jones D C, Bennett C R, Smith M A, Scott A M 2014 Opt. Lett. 39 3122

    [3]

    Sleiffer V, Jung Y M, Baddela N K, Surof J, Kuschnerov M, Veljanovski V, Hayes J R, Wheeler N V, Fokoua E N, Wooler J P 2014 J. Lightwave Technol. 32 854

    [4]

    Poletti F, Wheeler N V, Petrovich M N, Baddela N, Fokoua E N, Hayes J R, Gray D R, Li Z, Slavík R, Richardson D J 2013 Nature Photon. 7 279

    [5]

    Petrovich M N, Wheeler N V, Heidt A M, Baddela N K, Sandoghchi S R, Chen Y, Poletti F, Richardson D J 2014 16th International Conference on Transparent Optical Networks (ICTON), Graz, Austria, July 6-102014 We. A6.2

    [6]

    Terrel M A, Digonnet M J F, Fan S H 2012 J. Lightwave Technol. 30 931

    [7]

    Rothhardt J, Hörich S, Carstens H, Herrick N, Demmler S, Limpert J, Tnnermann A 2011 Opt. Lett. 36 4605

    [8]

    Joly N Y, Nold J, Chang W, Hölzer P, Nazarkin A, Wong G K, Biancalana F, Russell P S J 2011 Phys. Rev. Lett. 106 203901

    [9]

    Roberts P J, Couny F, Sabert H, Mangan B J, Williams D P, Farr L, Mason M W, Tomlinson A, Birks T A, Knight J C 2005 Opt. Express 13 236

    [10]

    West J A, Smith C M, Borrelli N F, Allan D C, Koch K W 2004 Opt. Express 12 1485

    [11]

    Petrovich M N, Poletti F, Wooler J P, Heidt A M, Baddela N K, Li Z, Gray D R, Slavík R, Parmigiani F, Wheeler N V 2013 Opt. Express 21 28559

    [12]

    Cregan R F, Mangan B J, Knight J C, Birks T A, Russell P S J, Roberts P J, Allan D C 1999 Science 285 1537

    [13]

    Cohen L G, Lin C 1977 Appl. Opt. 16 3136

    [14]

    Costa B, Mazzoni D, Puleo M, Vezzoni E 1982 IEEE J. Quantum Electron. 18 1509

    [15]

    Stone J, Marcuse D 1984 Electron. Lett. 20 751

    [16]

    Chang C C, Weiner A M 1997 IEEE J. Quantum Electron. 33 1455

    [17]

    Koch E, Chernikov S V, Taylor J R 2000 IEEE Photon. Technol. Lett. 12 864

    [18]

    Merritt P, Tatam R P, Jackson D A 1989 J. Lightwave Technol. 7 703

    [19]

    Lu P, Ding H M, Mihailov S J 2005 Meas. Sci. Technol. 16 1631

  • [1] Wei Wei, Zhang Zhi-Ming, Tang Li-Qin, Ding Lei, Fan Wan-De, Li Yi-Gang. Transmission characteristics of vortex beams in a sixfold photonic quasi-crystal fiber. Acta Physica Sinica, 2019, 68(11): 114209. doi: 10.7498/aps.68.20190381
    [2] Zhang Ling-Xiang, Wei Wei, Zhang Zhi-Ming, Liao Wen-Ying, Yang Zhen-Guo, Fan Wan-De, Li Yi-Gang. Propagation properties of vortex beams in a ring photonic crystal fiber. Acta Physica Sinica, 2017, 66(1): 014205. doi: 10.7498/aps.66.014205
    [3] Tao Zai-Hong, Qin Yuan-Yuan, Sun Bing, Sun Xiaohan. Perturbed solution and analyses for single photon transmission equation in optical fiber. Acta Physica Sinica, 2016, 65(13): 130301. doi: 10.7498/aps.65.130301
    [4] Li Zheng-Ying, Sun Wen-Feng, Li Zi-Mo, Wang Hong-Hai. A demodulation method of high-speed fiber Bragg grating based on dispersion-compensating fiber. Acta Physica Sinica, 2015, 64(23): 234207. doi: 10.7498/aps.64.234207
    [5] Chen Xiang, Zhang Xin-Ben, Zhu Xian, Cheng Lan, Peng Jing-Gang, Dai Neng-Li, Li Hai-Qing, Li Jin-Yan. Effects of structure parameters on the dispersion properties of dispersion compensation photonic crystal fiber. Acta Physica Sinica, 2013, 62(4): 044222. doi: 10.7498/aps.62.044222
    [6] Wang Wei, Yang Bo, Song Hong-Ru, Fan Yue. Characteristic analyses of high birefringence and two zero dispersion points photonic crystal fiber with octagonal lattices. Acta Physica Sinica, 2012, 61(14): 144601. doi: 10.7498/aps.61.144601
    [7] Wang Wei, Yang Bo. Dispersion and birefringence analysis of photonic crystal fiber with rhombus air-core structure. Acta Physica Sinica, 2012, 61(6): 064601. doi: 10.7498/aps.61.064601
    [8] Yin Jing-Chan, Xiao Xiao-Sheng, Yang Chang-Xi. Experimental study of slow light based on four-wave mixing wavelength conversion and dispersion in optical fibers. Acta Physica Sinica, 2010, 59(6): 3986-3991. doi: 10.7498/aps.59.3986
    [9] Zhang Mei-Yan, Li Shu-Guang, Yao Yan-Yan, Zhang Lei, Fu Bo, Yin Guo-Bing. Influence of micro-structured core on characteristics of photonic crystal fibers. Acta Physica Sinica, 2010, 59(5): 3278-3285. doi: 10.7498/aps.59.3278
    [10] Huang Xiao-Dong, Zhang Xiao-Min, Wang Jian-Jun, Xu Dang-Peng, Zhang Rui, Lin Hong-Huan, Deng Ying, Geng Yuan-Chao, Yu Xiao-Qiu. The effect of dispersion on FM-AM coversion in high power laser front end. Acta Physica Sinica, 2010, 59(3): 1857-1862. doi: 10.7498/aps.59.1857
    [11] Zhao Yan, Shi Wei-Hua, Jiang Yue-Jin. Effect of defects outside the centre on dispersive properties of photonic band gap guiding photonic crystal fibers. Acta Physica Sinica, 2010, 59(9): 6279-6283. doi: 10.7498/aps.59.6279
    [12] Yang Qian-Qian, Hou Lan-Tian. Octagonal photonic crystal fiber of birefringence. Acta Physica Sinica, 2009, 58(12): 8345-8351. doi: 10.7498/aps.58.8345
    [13] Li Lin-Li, Feng Guo-Ying, Yang Hao, Zhou Guo-Rui, Zhou Hao, Zhu Qi-Hua, Wang Jian-Jun, Zhou Shou-Huan. Dispersion properties and supercontinuum generation in nanofiber. Acta Physica Sinica, 2009, 58(10): 7005-7011. doi: 10.7498/aps.58.7005
    [14] Wei Dong-Bin, Zhou Gui-Yao, Zhao Xing-Tao, Yuan Jin-Hui, Meng Jia, Wang Hai-Yun, Hou Lan-Tian. A new analysis method of multi-cladding photonic crystal fibers. Acta Physica Sinica, 2008, 57(5): 3011-3015. doi: 10.7498/aps.57.3011
    [15] Nie Zhi-Qiang, Li Ling, Jiang Tong, Shen Lei-Jian, Li Pei-Zhe, Gan Chen-Li, Song Jian-Ping, Zhang Yan-Peng, Lu Ke-Qing. Three-photon absorption and dispersion of sub-femtosecond polarization beast in reverse V-type four-level. Acta Physica Sinica, 2008, 57(1): 243-251. doi: 10.7498/aps.57.243
    [16] Zhao Xing-Tao, Hou Lan-Tian, Liu Zhao-Lun, Wang Wei, Wei Hong-Yan, Ma Jing-Rui. Dispersion analysis of photonic crystal fiber using improved full-vectorial effective index method. Acta Physica Sinica, 2007, 56(4): 2275-2280. doi: 10.7498/aps.56.2275
    [17] Zhang De Sheng, Dong Xiao Yi, Zhang Wei-Gang, Wang Zhi. Studies on the dispersion in photonic crystal fiber using the step effective index model. Acta Physica Sinica, 2005, 54(3): 1235-1240. doi: 10.7498/aps.54.1235
    [18] Li Shu-Guang, Liu Xiao-Dong, Hou Lan-Tian. Vector analysis of dispersion for the fundamental cladding mode in photonic crystal fibers. Acta Physica Sinica, 2004, 53(6): 1873-1879. doi: 10.7498/aps.53.1873
    [19] Li Shu-Guang, Liu Xiao-Dong, Hou Lan-Tian. Numerical study on dispersion compensating property in photonic crystal fibers. Acta Physica Sinica, 2004, 53(6): 1880-1886. doi: 10.7498/aps.53.1880
    [20] Ren Guo-Bin, Wang Zhi, Lou Shu-Qin, Jian Shui-Sheng. Dispersion properties of high-index-core Bragg fibers. Acta Physica Sinica, 2004, 53(6): 1862-1867. doi: 10.7498/aps.53.1862
Metrics
  • Abstract views:  4577
  • PDF Downloads:  272
  • Cited By: 0
Publishing process
  • Received Date:  18 April 2016
  • Accepted Date:  12 July 2016
  • Published Online:  05 October 2016

/

返回文章
返回