Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Anisotropic etching of bilayer graphene controlled by gate voltage

Wang Guo-Le Xie Li Chen Peng Yang Rong Shi Dong-Xia Zhang Guang-Yu

Citation:

Anisotropic etching of bilayer graphene controlled by gate voltage

Wang Guo-Le, Xie Li, Chen Peng, Yang Rong, Shi Dong-Xia, Zhang Guang-Yu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Graphene nanostructures are proposed as promising materials for nanoelectronics such as transistors, sensors, spin valves and photoelectric devices. Zigzag edge graphene nanostructures had attracted broad attention due to their unique electronic properties. Anisotropic hydrogen-plasma etching has been demonstrated as an efficient top-down fabrication technique for zigzag-edged graphene nanostructures with a sub-10 nm spacial resolution. This anisotropic etching works for monolayer, bilayer and multilayer graphene and the etching rate depends on substrate temperature with a maximum etching rate at arround 400 C. It has been also founded that the anisotropic etching is also affected by the surface roughness and charge impurities of the substrate. Atomically flat substrates with no charge impurities would be ideal for the anisotropic etching. So far the understanding of hydrogen-plasma anisotropic etching, e.g. whether hydrogen radicals or hydrogen ions dominate the etching process, remains unclear. In this work, we investigated the anisotropic etching of graphene under electrical field modulations. Bilayer graphene peeled off from grahpite on SiO2 substrate was used as the experimental object. 2 nm-Ti (adhesive layer) and 40 nm-Au electrodes was deposited by electronic beam evaporation for electrical contacts. Gate voltates were applied to the bilayer graphene samples to make them either positively or negitively charged. These charged samples were then subjected to the hydrogen anisotropic etching at 400 C under the plasma power of 60 W and gas pressure of 0.3 Torr. The etching rates were characterized by the sizes of the etched hexagonal holes. We found that the etching rate for bilayer graphene on SiO2 substrate depends strongly on the gate voltages applied. With gate voltages sweeping from the negative to the positive, etching rate shows obvious decrease. 45 times of etching rate decrease was seen when sweeping the gate voltages from -30 V (positively charged) to 30 V (negatively charged). This gate-dependent anisotropic etching suggests that hydrogen ions rather than radicals plays a key role during the anisotropic etching process since the negatively charged graphene could neutralize the hydrogen ions quickly thus make them unreactive. The present work provides a strategy for fabrication of graphene nanostructures by anisotropic etching with a controllable manner.
      Corresponding author: Yang Rong, ryang@iphy.ac.cn;gyzhang@iphy.ac.cn ; Zhang Guang-Yu, ryang@iphy.ac.cn;gyzhang@iphy.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2013CB934500, 2013CBA01602), the National Natural Science Foundation of China (Grant Nos. 91223204, 61325021, 11574361, 91323304), and Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07010100).
    [1]

    Kim K, Choi J Y, Kim T, Cho S H, Chung H J 2011 Nature 479 338

    [2]

    Ponomarenko L, Schedin F, Katsnelson M, Yang R, Hill E, Novoselov K S, Geim A K 2008 Science 320 356

    [3]

    Martins T B, da Silva A J, Miwa R H, Fazzio A 2008 Nano Lett. 8 2293

    [4]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [5]

    Rycerz A, Tworzydlo J, Beenakker C 2007 Nat. Phys. 3 172

    [6]

    Kim W Y, Kim K S 2008 Nat. Nanotechnol. 3 408

    [7]

    Min S K, Kim W Y, Cho Y, Kim K S 2011 Nat.Nanotechnol 6 162

    [8]

    Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, de Arquer F P G, Gatti F, Koppens F H 2012 Nat. Nanotechnol. 7 363

    [9]

    Miao J S, Hu W D, Guo N, Lu Z Y, Liu X Q, Liao L, Chen P P, Jiang T, Wu S W, Ho J C, Wang L, Chen X S, Lu W 2015 Small 11 936

    [10]

    Long M, Liu E F, Wang P, Gao A Y, Xia H, Luo W, Wang B G, Zeng J W, Fu Y J, Xu K, Zhou W, L Y Y, Yao S H, Lu M H, Chen Y F, Ni Z H, You Y M, Zhang X A, Qin S Q, Shi Y, Hu W D, Xing D Y, Miao F 2016 Nano Lett. 16 2254

    [11]

    Magda G Z, Jin X Z, Hagymási I, Vancsó P, Osváth Z, Nemes-Incze P, Hwang C, Biró L P, Tapasztó L 2014 Nature 514 608

    [12]

    Wang S Y, Talirz L, Pignedoli C A, Feng X L, Muellen K, Fasel R, Ruffieux P 2016 Nat. Commun. 7 11507

    [13]

    Cai J M, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X L 2010 Nature 466 470

    [14]

    Yang X Y, Dou X, Rouhanipour A, Zhi L J, Röder H J, Mllen K 2008 J. Am. Chem. Soc. 130 4216

    [15]

    Solís-Fernández P, Yoshida K, Ogawa Y, Tsuji M, Ago H 2013 Adv. Mater. 25 6562

    [16]

    Yang R, Zhang L C, Wang Y, Shi Z W, Shi D X, Gao H J, Wang E G, Zhang G Y 2010 Adv. Mater. 22 4014

    [17]

    Shi Z W, Yang R, Zhang L C, Wang Y, Liu D H, Shi D X, Wang E G, Zhang G Y 2011 Adv. Mater. 23 3061

    [18]

    Xie L M, Jiao L Y, Dai H J 2010 J. Am. Chem. Soc. 132 14751

    [19]

    Diankov G, Neumann M, Goldhaber-Gordon D 2013 ACS Nano 7 1324

    [20]

    Sharma R, Baik J H, Perera C J, Strano M S 2010 Nano Lett. 10 398

    [21]

    Yamamoto M, Einstein T L, Fuhrer M S, Cullen W G 2012 ACS Nano 6 8335

    [22]

    Nunomura S, Kondo M 2007 J. Appl. Phys. 102 093306

    [23]

    Harpale A, Panesi M, Chew H B 2016 Phys. Rev. B 93 035416

    [24]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [25]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401

    [26]

    Roth J, Garcia-Rosales C 1996 Nucl. Fusion 36 1647

    [27]

    Mech B, Haasz A, Davis J 1998 J. Appl. Phys. 84 1655

    [28]

    Liu S G, Sun J Z, Dai S Y, Stirner T, Wang D Z 2010 J. Appl. Phys. 108 073302

  • [1]

    Kim K, Choi J Y, Kim T, Cho S H, Chung H J 2011 Nature 479 338

    [2]

    Ponomarenko L, Schedin F, Katsnelson M, Yang R, Hill E, Novoselov K S, Geim A K 2008 Science 320 356

    [3]

    Martins T B, da Silva A J, Miwa R H, Fazzio A 2008 Nano Lett. 8 2293

    [4]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [5]

    Rycerz A, Tworzydlo J, Beenakker C 2007 Nat. Phys. 3 172

    [6]

    Kim W Y, Kim K S 2008 Nat. Nanotechnol. 3 408

    [7]

    Min S K, Kim W Y, Cho Y, Kim K S 2011 Nat.Nanotechnol 6 162

    [8]

    Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, de Arquer F P G, Gatti F, Koppens F H 2012 Nat. Nanotechnol. 7 363

    [9]

    Miao J S, Hu W D, Guo N, Lu Z Y, Liu X Q, Liao L, Chen P P, Jiang T, Wu S W, Ho J C, Wang L, Chen X S, Lu W 2015 Small 11 936

    [10]

    Long M, Liu E F, Wang P, Gao A Y, Xia H, Luo W, Wang B G, Zeng J W, Fu Y J, Xu K, Zhou W, L Y Y, Yao S H, Lu M H, Chen Y F, Ni Z H, You Y M, Zhang X A, Qin S Q, Shi Y, Hu W D, Xing D Y, Miao F 2016 Nano Lett. 16 2254

    [11]

    Magda G Z, Jin X Z, Hagymási I, Vancsó P, Osváth Z, Nemes-Incze P, Hwang C, Biró L P, Tapasztó L 2014 Nature 514 608

    [12]

    Wang S Y, Talirz L, Pignedoli C A, Feng X L, Muellen K, Fasel R, Ruffieux P 2016 Nat. Commun. 7 11507

    [13]

    Cai J M, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X L 2010 Nature 466 470

    [14]

    Yang X Y, Dou X, Rouhanipour A, Zhi L J, Röder H J, Mllen K 2008 J. Am. Chem. Soc. 130 4216

    [15]

    Solís-Fernández P, Yoshida K, Ogawa Y, Tsuji M, Ago H 2013 Adv. Mater. 25 6562

    [16]

    Yang R, Zhang L C, Wang Y, Shi Z W, Shi D X, Gao H J, Wang E G, Zhang G Y 2010 Adv. Mater. 22 4014

    [17]

    Shi Z W, Yang R, Zhang L C, Wang Y, Liu D H, Shi D X, Wang E G, Zhang G Y 2011 Adv. Mater. 23 3061

    [18]

    Xie L M, Jiao L Y, Dai H J 2010 J. Am. Chem. Soc. 132 14751

    [19]

    Diankov G, Neumann M, Goldhaber-Gordon D 2013 ACS Nano 7 1324

    [20]

    Sharma R, Baik J H, Perera C J, Strano M S 2010 Nano Lett. 10 398

    [21]

    Yamamoto M, Einstein T L, Fuhrer M S, Cullen W G 2012 ACS Nano 6 8335

    [22]

    Nunomura S, Kondo M 2007 J. Appl. Phys. 102 093306

    [23]

    Harpale A, Panesi M, Chew H B 2016 Phys. Rev. B 93 035416

    [24]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [25]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401

    [26]

    Roth J, Garcia-Rosales C 1996 Nucl. Fusion 36 1647

    [27]

    Mech B, Haasz A, Davis J 1998 J. Appl. Phys. 84 1655

    [28]

    Liu S G, Sun J Z, Dai S Y, Stirner T, Wang D Z 2010 J. Appl. Phys. 108 073302

  • [1] Zhu Yi-Heng, Zhu Zhi-Guang, Chen Cheng-Ke, Jiang Mei-Yan, Li Xiao, Lu Shao-Hua, Hu Xiao-Jun. Preparation of nanodiamonds based on phase transformation of vertical sheet under atmospheric pressure. Acta Physica Sinica, 2024, 73(2): 028101. doi: 10.7498/aps.73.20231064
    [2] Wu Cheng-Wei, Ren Xue, Zhou Wu-Xing, Xie Guo-Feng. Theoretical study of anisotropy and ultra-low thermal conductance of porous graphene nanoribbons. Acta Physica Sinica, 2022, 71(2): 027803. doi: 10.7498/aps.71.20211477
    [3] Wang Fei, Wei Bing. Propagation matrix for electromagnetic interaction through electrostatically and magnetostatically biased graphene sheet. Acta Physica Sinica, 2021, 70(1): 014102. doi: 10.7498/aps.70.20201089
    [4] Theoretical Study on Anisotropy and Ultra-low Thermal Conductance of Porous Graphene nanoribbons. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211477
    [5] Lu Min, Huang Hui-Lian, Yu Dong-Hai, Liu Wei-Qing, Wei Wang-He. Anisotropy of melting of Ag nanocrystal with different crystallographic planes at high temperature. Acta Physica Sinica, 2015, 64(10): 106101. doi: 10.7498/aps.64.106101
    [6] Wang Ri-Xing, Xiao Yun-Chang, Zhao Jing-Li. Ferromagnetic resonance in spin valve structures with perpendicular anisotropy. Acta Physica Sinica, 2014, 63(21): 217601. doi: 10.7498/aps.63.217601
    [7] Zhou Jian-Mei, Zhang Ye, Wang Hong-Nian, Yang Shou-Wen, Yin Chang-Chun. Efficient simulation of three-dimensional marine controlled-source electromagnetic response in anisotropic formation by means of coupled potential finite volume method. Acta Physica Sinica, 2014, 63(15): 159101. doi: 10.7498/aps.63.159101
    [8] Zhu Yun, Han Na. Research on enhanced perpendicular magnetic anisotropy in CoFe/Pd bilayer structure. Acta Physica Sinica, 2012, 61(16): 167505. doi: 10.7498/aps.61.167505
    [9] Chen Wen-Bing, Han Man-Gui, Deng Long-Jiang. Microwave absorbing properties of cobalt nanowires with transverse magnetocrystalline anisotropy. Acta Physica Sinica, 2011, 60(1): 017507. doi: 10.7498/aps.60.017507
    [10] Wan Yong, Han Wen-Juan, Liu Jun-Hai, Xia Lin-Hua, Xavier Mateos, Valentin Petrov, Zhang Huai-Jin, Wang Ji-Yang. Anisotropy in spectroscopic and laser properties of monoclinic Yb:KLu(WO4)2 crystal. Acta Physica Sinica, 2009, 58(1): 278-284. doi: 10.7498/aps.58.278.1
    [11] Chen Gui-Bo, Wang Hong-Nian, Yao Jing-Jin, Han Zi-Ye. Three-dimensional numerical modeling of marine controlled-source electromagnetic responses in a layered anisotropic seabed using integral equation method. Acta Physica Sinica, 2009, 58(6): 3848-3857. doi: 10.7498/aps.58.3848
    [12] Wu Chao, Xie Zi-Li, Zhang Rong, Zhang Zeng, Liu Bin, Li Yi, Fu De-Yi, Xiu Xiang-Qian, Han Ping, Shi Yi, Zheng You-Dou. Structural and optical in-plane anisotropy of m-plane GaN. Acta Physica Sinica, 2008, 57(11): 7190-7193. doi: 10.7498/aps.57.7190
    [13] Meng Fan-Yi, Wu Qun, Fu Jia-Hui, Gu Xue-Mai, Li Le-Wei. Resonance characteristics of a three-dimensional anisotropic metamaterial bilayer. Acta Physica Sinica, 2008, 57(10): 6213-6220. doi: 10.7498/aps.57.6213
    [14] Xu Xiao-Yong, Pan Jing, Hu Jing-Guo. Configuration of the antiferromagnetic magnetization and the exchange anisotropy in exchange-biased bilayers. Acta Physica Sinica, 2007, 56(9): 5476-5482. doi: 10.7498/aps.56.5476
    [15] Shi Fang-Ye, Fang Yun-Zhang, Sun Huai-Jun, Zheng Jin-Ju, Lin Gen-Jin, Wu Feng-Min. Mesostructure investigation of the transverse magnetic anisotropy field in stress-annealed Fe-based nanocrystalline ribbons. Acta Physica Sinica, 2007, 56(7): 4009-4016. doi: 10.7498/aps.56.4009
    [16] Lin Bao-Qin, Xu Li-Jun, Yuan Nai-Chang. Uniplanar compact photonic band-gap on uniaxial anisotropic substrate. Acta Physica Sinica, 2005, 54(8): 3711-3715. doi: 10.7498/aps.54.3711
    [17] Gao Ru-Wei, Feng Wei-Cun, Wang Biao, Chen Wei, Han Guang-Bing, Zhang Peng, Liu Han-Qiang, Li Wei, Guo Yong-Quan, Li Xiu-Mei. Effective anisotropy and coercivity in nanocomposite permanent materials. Acta Physica Sinica, 2003, 52(3): 703-707. doi: 10.7498/aps.52.703
    [18] WANG CHENG-WEI, PENG YONG, PAN SHAN-LIN, ZHANG HAO-LI, LI HU-LIN. M?SSBAUER SPECTRUM STUDIES OF MAGNETIC ANISOTROPY OF α-Fe NANOWIRE ARRAYS IN ALUMINA TEMPLATE. Acta Physica Sinica, 1999, 48(11): 2146-2150. doi: 10.7498/aps.48.2146
    [19] JI SONG, YANG GUO-BIN, WANG RUN. TWO-PHASE RANDOM MAGNETIC ANISOTROPY MODEL FOR NANOSTRUCTURED SOFT MAGNETIC ALLOYS. Acta Physica Sinica, 1996, 45(12): 2061-2067. doi: 10.7498/aps.45.2061
    [20] LU QUAN-KANG, CHEN GUO-RANG, WANG QIAN, XIONG XlAO-MING, JIN YONG, TANG MING. THE FORM FACTOR OF RADIATION SCATTERING IN AN ANISOTROPIC PLASMA. Acta Physica Sinica, 1983, 32(5): 618-626. doi: 10.7498/aps.32.618
Metrics
  • Abstract views:  5019
  • PDF Downloads:  465
  • Cited By: 0
Publishing process
  • Received Date:  22 July 2016
  • Accepted Date:  12 August 2016
  • Published Online:  05 October 2016

/

返回文章
返回