Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of silver nanoparticles on Raman spectrum and fluorescence enhancement of nano-diamond

Liu Li-Shuang Chou Xiu-Jian Chen Tao Sun Li-Ning

Citation:

Effects of silver nanoparticles on Raman spectrum and fluorescence enhancement of nano-diamond

Liu Li-Shuang, Chou Xiu-Jian, Chen Tao, Sun Li-Ning
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The nano-diamond has been a hot topic in the field of nano-science and nanotechnology for its optical properties. Much effort has been devoted to improving the fluorescence and Raman scattering intensity of nitrogen-vacancy (NV) center in nano-diamond by using plasmon resonance effect in sensing area. A combination of Ag nanoparticle and diamond can not only take advantage of the stability and biocompatibility of diamond, but also enhance the local electric field around NV center through the Ag nanoparticles, thereby speeding up the radiation of the fluorescent near the surface of the substrate, improving the strength and stability of the fluorescence, and greatly broadening the application areas of Raman spectroscopy. In this paper, we mix the nano-diamonds with Ag nanoparticles to improve the fluorescence and Raman scattering intensity on the basis of the localized surface plasmon resonance effect. The influences of Ag mass concentration on the Raman spectrum and fluorescence intensity are investigated. The results show that when the concentration of nano-Ag nanoparticles reaches up to 5 wt%, the light intensity becomes saturated, but the concentration further increases up to a value more than 7 wt% the light intensity begins to decline. Then the corresponding radiative transition rate and the fluorescence quantum efficiency are investigated, and based on these researches, influences and mechanism of surface plasmon resonance (SPR) enhancement are discussed thoroughly. We deduced that the fluorescence enhancement is mainly due to the enhanced surface plasmon field caused by transfer of surface plasmon resonance energy and the energy transfer between surface plasmon and excited state of NV centers. When the concentration of Ag nanoparticles reaches an appropriate value, a suitable distance between metal nanoparticles and diamond is obtained, thereby ensuring the strong local electric field forming on the metal surface, accelerating the emitting photons of diamond in the excited state, and also suppressing the transfer of non-radiative energy, eventually leading to the increase of diamond fluorescence emission intensity.
      Corresponding author: Chou Xiu-Jian, chouxiujian@163.com
    • Funds: Project supported by the China Postdoctoral Science Foundation (Grant Nos. 11174237, 10974161), and Jiangsu Planned Projects for Postdoctoral Research Funds, China (Grant No. 1201038C).
    [1]

    Perevedentseva E, Karmenyan A, Chung P H, Cheng C L 2005 J. Vac. Sci. Technol. B 23 1980

    [2]

    Babinec T M, Hausmann B J, Khan M, Zhang Y, Maze J R, Hemmer P R, Loncčar M 2010 Nat. Nanotechnol. 5 195

    [3]

    Tanabe I, Tatsuma T 2012 Nano Lett. 12 5418

    [4]

    Schmidt J P, Cross S E, Buratto S K 2004 J. Chem. Phys. 121 10657

    [5]

    Wang F, Shen Y R 2006 Phys. Rev. Lett. 97 206806

    [6]

    Santoro G, Yu S, Schwartzkopf M, Zhang P, Koyiloth Vayalil S, Risch J F H, Rbhausen M A, Hernández M, Domingo C, Roth S V 2014 Appl. Phys. Lett. 104 243107

    [7]

    Liu F X, Cao Z S, Tang C J, Chen L, Wang Z L 2010 Acs Nano 4 2643

    [8]

    Kneipp J, Kneipp H, Kneipp K 2008 Chem. Soc. Rev. 37 1052

    [9]

    Erol M, Han Y, Stanley S K, Stafford C M, Du H, Sukhishvili S 2009 J. Am. Chem. Soc. 131 7480

    [10]

    Feng J J, Gernert U, Sezer M, Kuhlmann U, Murgida D H, David C, Richter M, Knorr A, Hildebrandt P, Weidinger I M 2009 Nano Lett. 9 298

    [11]

    Schietinger S, Barth M, Aichele T, Benson O 2009 Nano Lett. 9 1694

    [12]

    Kolesov R, Grotz B, Balasubramanian G, Stöhr R J, Nicolet A A, Hemmer P R, Jelezko F, Wrachtrup J 2009 Nat. Phys. 5 470

    [13]

    Damm S, Lordan F, Murphy A, McMillen M, Pollard R, Rice J H 2014 Plasmonics 9 1371

    [14]

    Lordan F, Damm S, Kennedy E, Mallon C, Forster R J, Keyes T E, Rice J H 2013 Plasmonics 8 1567

    [15]

    Song J, Cheng S, Li H, Guo H, Xu S, Xu W 2014 Mater. Lett. 135 214

    [16]

    Lin T, Yu G, Wee A, Shen Z, Loh K P 2000 Appl. Phys. Lett. 77 2692

    [17]

    Le Ru E, Blackie E, Meyer M, Etchegoin P G 2007 J. Phys. Chem. C 111 13794

    [18]

    Tang J, Guo H, Chen M, Yang J, Tsoukalas D, Zhang B, Liu J, Xue C, Zhang W 2015 Sensor. Actuat. B: Chem. 218 145

    [19]

    Pons T, Medintz I L, Sapsford K E, Higashiya S, Grimes A F, English D S, Mattoussi H 2007 Nano Lett. 7 3157

    [20]

    Shi Y, Guo H, Yang J, Zhao M, Liu J, Xue C, Tang J 2015 Materials 8 3806

    [21]

    Cherukulappurath S, Johnson T W, Lindquist N C, Oh S H 2013 Nano Lett. 13 5635

    [22]

    Liu F, Tang C, Zhan P, Chen Z, Ma H, Wang Z 2014 Sci. Rep. 4 4494

    [23]

    Atay T, Song J H, Nurmikko A V 2004 Nano Lett. 4 1627

    [24]

    Kruszewski S, Wybranowski T, Cyrankiewicz M, Ziomkowska B, Pawlaczyk A 2008 Acta Phys. Pol. A 113 1599

    [25]

    Lakowicz J R 2001 Anal. Biochem. 298 1

    [26]

    Ito Y, Matsuda K, Kanemitsu Y 2007 Phys. Rev. B 75 033309

  • [1]

    Perevedentseva E, Karmenyan A, Chung P H, Cheng C L 2005 J. Vac. Sci. Technol. B 23 1980

    [2]

    Babinec T M, Hausmann B J, Khan M, Zhang Y, Maze J R, Hemmer P R, Loncčar M 2010 Nat. Nanotechnol. 5 195

    [3]

    Tanabe I, Tatsuma T 2012 Nano Lett. 12 5418

    [4]

    Schmidt J P, Cross S E, Buratto S K 2004 J. Chem. Phys. 121 10657

    [5]

    Wang F, Shen Y R 2006 Phys. Rev. Lett. 97 206806

    [6]

    Santoro G, Yu S, Schwartzkopf M, Zhang P, Koyiloth Vayalil S, Risch J F H, Rbhausen M A, Hernández M, Domingo C, Roth S V 2014 Appl. Phys. Lett. 104 243107

    [7]

    Liu F X, Cao Z S, Tang C J, Chen L, Wang Z L 2010 Acs Nano 4 2643

    [8]

    Kneipp J, Kneipp H, Kneipp K 2008 Chem. Soc. Rev. 37 1052

    [9]

    Erol M, Han Y, Stanley S K, Stafford C M, Du H, Sukhishvili S 2009 J. Am. Chem. Soc. 131 7480

    [10]

    Feng J J, Gernert U, Sezer M, Kuhlmann U, Murgida D H, David C, Richter M, Knorr A, Hildebrandt P, Weidinger I M 2009 Nano Lett. 9 298

    [11]

    Schietinger S, Barth M, Aichele T, Benson O 2009 Nano Lett. 9 1694

    [12]

    Kolesov R, Grotz B, Balasubramanian G, Stöhr R J, Nicolet A A, Hemmer P R, Jelezko F, Wrachtrup J 2009 Nat. Phys. 5 470

    [13]

    Damm S, Lordan F, Murphy A, McMillen M, Pollard R, Rice J H 2014 Plasmonics 9 1371

    [14]

    Lordan F, Damm S, Kennedy E, Mallon C, Forster R J, Keyes T E, Rice J H 2013 Plasmonics 8 1567

    [15]

    Song J, Cheng S, Li H, Guo H, Xu S, Xu W 2014 Mater. Lett. 135 214

    [16]

    Lin T, Yu G, Wee A, Shen Z, Loh K P 2000 Appl. Phys. Lett. 77 2692

    [17]

    Le Ru E, Blackie E, Meyer M, Etchegoin P G 2007 J. Phys. Chem. C 111 13794

    [18]

    Tang J, Guo H, Chen M, Yang J, Tsoukalas D, Zhang B, Liu J, Xue C, Zhang W 2015 Sensor. Actuat. B: Chem. 218 145

    [19]

    Pons T, Medintz I L, Sapsford K E, Higashiya S, Grimes A F, English D S, Mattoussi H 2007 Nano Lett. 7 3157

    [20]

    Shi Y, Guo H, Yang J, Zhao M, Liu J, Xue C, Tang J 2015 Materials 8 3806

    [21]

    Cherukulappurath S, Johnson T W, Lindquist N C, Oh S H 2013 Nano Lett. 13 5635

    [22]

    Liu F, Tang C, Zhan P, Chen Z, Ma H, Wang Z 2014 Sci. Rep. 4 4494

    [23]

    Atay T, Song J H, Nurmikko A V 2004 Nano Lett. 4 1627

    [24]

    Kruszewski S, Wybranowski T, Cyrankiewicz M, Ziomkowska B, Pawlaczyk A 2008 Acta Phys. Pol. A 113 1599

    [25]

    Lakowicz J R 2001 Anal. Biochem. 298 1

    [26]

    Ito Y, Matsuda K, Kanemitsu Y 2007 Phys. Rev. B 75 033309

Metrics
  • Abstract views:  5233
  • PDF Downloads:  371
  • Cited By: 0
Publishing process
  • Received Date:  03 May 2016
  • Accepted Date:  04 July 2016
  • Published Online:  05 October 2016

/

返回文章
返回