Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Two broadband chaotic signals generated simultaneously by semiconductor ring laser with parallel chaotic injection

Yan Juan Pan Wei Li Nian-Qiang Zhang Li-Yue Liu Qing-Xi

Citation:

Two broadband chaotic signals generated simultaneously by semiconductor ring laser with parallel chaotic injection

Yan Juan, Pan Wei, Li Nian-Qiang, Zhang Li-Yue, Liu Qing-Xi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Recently semiconductor ring laser (SRL) as a novel device has received much attention, for its special cavity allows the output light to propagate in two opposite directions, namely the clockwise mode and counterclockwise mode. SRL does not require gratings or cleaved facets for optical feedback and can be a candidate for small sized photonic integrated circuits which have been developed for secure data transmission, with chaotic carriers and high rate random bit generated. In this paper, we propose a method to obtain two broadband chaotic signals with high unpredictability degree by utilizing injected slave SRL and further explore the physical mechanism and injection conditions. Based on a conventional master-slave configuration, the proposed method obtains two modes of chaotic signals by master SRL with external cross feedback, which are injected in parallel to a slave SRL correspondingly. According to the well-known Lang-Kobayashi rate equations, we establish rate equations and numerically investigate the influences of frequency detuning and injection strength on bandwidth and unpredictability degree. We adapt the given definition of bandwidth and the normalized permutation entropy to respectively evaluate bandwidth and unpredictability degree of chaotic signals. Furthermore, we reveal the underlying physical mechanism of bandwidth enhancement and asymmetric bandwidth-enhancing region by analyzing the radiofrequency and optical spectra of intensity time series. The results show that two chaotic signals have similar routes to enhancing the bandwidth in frequency domain. In the unlocking injection area, two broadband and unpredictability-enhancing chaotic signals generated by slave SRL are simultaneously achieved by choosing appropriate control parameters. Analyses of optical spectra reveal that high-frequency periodic oscillation generated between injection chaotic signals and slave light via beating is the physical mechanism of bandwidth enhncment. The bandwidthenhancing domains of two chaotic signals are asymmetrical due to redshift of master SRL frequency, with external chaotic signals injected. Bandwidth-enhanced chaotic signals are easier to obtain in the domain of negative frequency detuning. The asymmetrical injections contribute to reducing the locking region and extending the bandwidthenhancing region under high injection strength. This conventional master-slave configuration composed of two SRLs can be easily implemented on chip and save other optical devices. The slave SRL subjected to parallel injection signals from master SRL can be used as a wideband unpredictability-enhancing chaotic source, which is extremely useful for the high capacity security-enhancing multiple chaotic communications, as well as for the potential applications of high speed random number generators.
      Corresponding author: Yan Juan, juan126jay@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61274042).
    [1]

    Ermakov I V, Kingni S T, Tronciu V Z, Danckaert J 2013 Opt. Commun. 286 265

    [2]

    Li N Q, Pan W, Yan L S, Luo B, Zou X H 2014 Commun. Nonlinear Sci. Numer. Simul. 19 1874

    [3]

    Li N Q, Pan W, Xiang S Y, Luo B, Yan L S, Zou X H 2013 Appl. Opt. 52 1523

    [4]

    Sunada S, Harayama T, Arai K, Yoshimura K, Tsuzuki K, Uchida A, Davis P 2011 Opt. Express 19 7439

    [5]

    Hirano K, Yamazaki T, Morikatsu S, Okumura H, Aida H, Uchida A, Yoshimori S, Yoshimura K, Harayama T, Davis P 2010 Opt. Express 18 5512

    [6]

    Wang A B, Wang B J, Li L, Wang Y C, Shore K A 2015 IEEE J. Sel. Top. Quantum Electron. 21 1800710

    [7]

    Sakuraba R, Iwakawa K, Kanno K, Uchida A 2015 Opt. Express 23 1470

    [8]

    Murakami A, Kawashima K, Atsuki K 2003 IEEE J. Quantum Electron. 39 1196

    [9]

    Wang A B, Wang Y C, He H 2008 IEEE Photonics. Technol. Lett. 20 1633

    [10]

    Wang A B, Wang Y C, Wang J F 2009 Opt. Lett. 34 1144

    [11]

    Hong Y H, Spencer P S, Shore K A 2012 Opt. Soc. Am. 29 415

    [12]

    Chen J J, Wu Z M, Tang X, Deng T, Fan L, Zhong Z Q, Xia G Q 2015 Opt. Express 23 7173

    [13]

    Uchida A, Heil T, Liu Y, Davis P, Aida T 2003 IEEE J. Quantum Electron. 39 1462

    [14]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Li N Q, Zhu H N 2012 IEEE J. Quantum Electron. 48 1069

    [15]

    Memon M I, Li B, Mezosi G, Wang Z R, Sorel M, Yu S Y 2009 IEEE Photonics Technol. Lett. 21 1792

    [16]

    Yuan G H, Zhang X, Wang Z R 2013 Optik 124 5715

    [17]

    Xiang S Y, Wen A J, Shang L, Zhang H X, Lin L 2013 International Conference on Optical Communications & Networks Bhopal, India July 26-28, 2013 p1

    [18]

    Li N Q, Pan W, Xiang S Y, Yan L S, Luo B, Zou X H, Zhang L Y 2013 Optics & Laser Technology 53 45

    [19]

    Nguimdo R M, Verschaffelt G, Danckaert J, van der Sande G 2012 Opt. Lett. 37 2541

    [20]

    Wang Z R, Yuan G H, Verschaffelt G, Danckaert J, Yu S Y 2008 IEEE Photonics Technol. Lett. 20 1228

    [21]

    Trita A, Mezosi G, Sorel M, Giuliani G 2014 IEEE Photonics Technol. Lett. 26 96

    [22]

    Wang S T, Wu Z M, Wu J G, Zhou L, Xia G Q 2015 Acta Phys. Sin. 64 154205 (in Chinese)[王顺天, 吴正茂, 吴加贵, 周立, 夏光琼2015物理学报64 154205]

    [23]

    Chrostowski L, Shi W 2008 IEEE J. Lightwave Technol. 26 3355

    [24]

    Sorel M, Giuliani G, Scire A, Miglierina R, Donati S, Laybourn P J R 2003 IEEE J. Quantum Electron. 39 1187

    [25]

    Xiang S Y 2012 Ph. D. Dissertation (Chengdu:Southwest jiaotong university) (in Chinese)[项水英2012博士学位论文(成都:西南交通大学)]

    [26]

    Liu Q X, Pan W, Zhang L Y, Li N Q, Yan J 2015 Acta Phys. Sin. 64 242091 (in Chinese)[刘庆喜, 潘炜, 张力月, 李念强, 阎娟2015物理学报64 242091]

    [27]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [28]

    Zunino L, Rosso O A, Soriano M C 2011 IEEE J. Sel. Top. Quantum Electron. 17 1250

  • [1]

    Ermakov I V, Kingni S T, Tronciu V Z, Danckaert J 2013 Opt. Commun. 286 265

    [2]

    Li N Q, Pan W, Yan L S, Luo B, Zou X H 2014 Commun. Nonlinear Sci. Numer. Simul. 19 1874

    [3]

    Li N Q, Pan W, Xiang S Y, Luo B, Yan L S, Zou X H 2013 Appl. Opt. 52 1523

    [4]

    Sunada S, Harayama T, Arai K, Yoshimura K, Tsuzuki K, Uchida A, Davis P 2011 Opt. Express 19 7439

    [5]

    Hirano K, Yamazaki T, Morikatsu S, Okumura H, Aida H, Uchida A, Yoshimori S, Yoshimura K, Harayama T, Davis P 2010 Opt. Express 18 5512

    [6]

    Wang A B, Wang B J, Li L, Wang Y C, Shore K A 2015 IEEE J. Sel. Top. Quantum Electron. 21 1800710

    [7]

    Sakuraba R, Iwakawa K, Kanno K, Uchida A 2015 Opt. Express 23 1470

    [8]

    Murakami A, Kawashima K, Atsuki K 2003 IEEE J. Quantum Electron. 39 1196

    [9]

    Wang A B, Wang Y C, He H 2008 IEEE Photonics. Technol. Lett. 20 1633

    [10]

    Wang A B, Wang Y C, Wang J F 2009 Opt. Lett. 34 1144

    [11]

    Hong Y H, Spencer P S, Shore K A 2012 Opt. Soc. Am. 29 415

    [12]

    Chen J J, Wu Z M, Tang X, Deng T, Fan L, Zhong Z Q, Xia G Q 2015 Opt. Express 23 7173

    [13]

    Uchida A, Heil T, Liu Y, Davis P, Aida T 2003 IEEE J. Quantum Electron. 39 1462

    [14]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Li N Q, Zhu H N 2012 IEEE J. Quantum Electron. 48 1069

    [15]

    Memon M I, Li B, Mezosi G, Wang Z R, Sorel M, Yu S Y 2009 IEEE Photonics Technol. Lett. 21 1792

    [16]

    Yuan G H, Zhang X, Wang Z R 2013 Optik 124 5715

    [17]

    Xiang S Y, Wen A J, Shang L, Zhang H X, Lin L 2013 International Conference on Optical Communications & Networks Bhopal, India July 26-28, 2013 p1

    [18]

    Li N Q, Pan W, Xiang S Y, Yan L S, Luo B, Zou X H, Zhang L Y 2013 Optics & Laser Technology 53 45

    [19]

    Nguimdo R M, Verschaffelt G, Danckaert J, van der Sande G 2012 Opt. Lett. 37 2541

    [20]

    Wang Z R, Yuan G H, Verschaffelt G, Danckaert J, Yu S Y 2008 IEEE Photonics Technol. Lett. 20 1228

    [21]

    Trita A, Mezosi G, Sorel M, Giuliani G 2014 IEEE Photonics Technol. Lett. 26 96

    [22]

    Wang S T, Wu Z M, Wu J G, Zhou L, Xia G Q 2015 Acta Phys. Sin. 64 154205 (in Chinese)[王顺天, 吴正茂, 吴加贵, 周立, 夏光琼2015物理学报64 154205]

    [23]

    Chrostowski L, Shi W 2008 IEEE J. Lightwave Technol. 26 3355

    [24]

    Sorel M, Giuliani G, Scire A, Miglierina R, Donati S, Laybourn P J R 2003 IEEE J. Quantum Electron. 39 1187

    [25]

    Xiang S Y 2012 Ph. D. Dissertation (Chengdu:Southwest jiaotong university) (in Chinese)[项水英2012博士学位论文(成都:西南交通大学)]

    [26]

    Liu Q X, Pan W, Zhang L Y, Li N Q, Yan J 2015 Acta Phys. Sin. 64 242091 (in Chinese)[刘庆喜, 潘炜, 张力月, 李念强, 阎娟2015物理学报64 242091]

    [27]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [28]

    Zunino L, Rosso O A, Soriano M C 2011 IEEE J. Sel. Top. Quantum Electron. 17 1250

  • [1] Mu Peng-Hua, Chen Hao, Liu Guo-Peng, Hu Guo-Si. Chaotic Time Delay Feature Cancellation and Bandwidth Enhancement in Cascaded-Coupled Nanolasers. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20231643
    [2] Han Tao, Liu Xiang-Lian, Li Pu, Guo Xiao-Min, Guo Yan-Qiang, Wang Yun-Cai. Influence of the linewidth enhancement factor on the characteristics of the random number extracted from the optical feedback semiconductor laser. Acta Physica Sinica, 2017, 66(12): 124203. doi: 10.7498/aps.66.124203
    [3] Su Bin-Bin, Chen Jian-Jun, Wu Zheng-Mao, Xia Guang-Qiong. Performances of time-delay signature and bandwidth of the chaos generated by a vertical-cavity surface-emitting laser under chaotic optical injection. Acta Physica Sinica, 2017, 66(24): 244206. doi: 10.7498/aps.66.244206
    [4] Yan Sen-Lin. Control of chaos in a semiconductor laser using the Faraday effect. Acta Physica Sinica, 2015, 64(24): 240505. doi: 10.7498/aps.64.240505
    [5] Yang Xian-Jie, Chen Jian-Jun, Xia Guang-Qiong, Wu Jia-Gui, Wu Zheng-Mao. Analyses of the time-delay signature and bandwidth of the chaotic output from a master-slave vertical-cavity surface-emitting laser dynamical system. Acta Physica Sinica, 2015, 64(22): 224213. doi: 10.7498/aps.64.224213
    [6] Wang Shun-Tian, Wu Zheng-Mao, Wu Jia-Gui, Zhou Li, Xia Guang-Qiong. High speed bidirectional dual-channel chaos secure communication based on semiconductor ring lasers. Acta Physica Sinica, 2015, 64(15): 154205. doi: 10.7498/aps.64.154205
    [7] Yan Sen-Lin. Frequency enhancement and control of chaos in two spatial coupled semiconductor lasers using external light injection. Acta Physica Sinica, 2012, 61(16): 160505. doi: 10.7498/aps.61.160505
    [8] Feng Ye, Yang Yi-Biao, Wang An-Bang, Wang Yun-Cai. Generation of 27 GHz flat broadband chaotic laser with semiconductor laser loop. Acta Physica Sinica, 2011, 60(6): 064206. doi: 10.7498/aps.60.064206
    [9] Yan Sen-Lin. Bandwidth enhancement of a chaotic semiconductor laser transmitter by cross-phase modulation. Acta Physica Sinica, 2010, 59(6): 3810-3816. doi: 10.7498/aps.59.3810
    [10] Yang Ling-Zhen, Qiao Zhan-Duo, Wu Yun-Qiao, Wang Yun-Cai. Study of chaotic bandwidth in erbium-doped ring fiber laser. Acta Physica Sinica, 2010, 59(6): 3965-3972. doi: 10.7498/aps.59.3965
    [11] Zhao Yan-Feng. Chaos characteristics of the semiconductor laser with double external cavity optical feedback. Acta Physica Sinica, 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
    [12] Yu Si-Yao, Guo Shu-Xu, Gao Feng-Li. Calculation of the Lyapunov exponent for low frequency noise in semiconductor laser and chaos indentification. Acta Physica Sinica, 2009, 58(8): 5214-5217. doi: 10.7498/aps.58.5214
    [13] Yan Sen-Lin. Control of chaos in an external cavity delay feedback semiconductor laser via modulating the polarizing light. Acta Physica Sinica, 2008, 57(11): 6878-6882. doi: 10.7498/aps.57.6878
    [14] Yan Sen-Lin. Control of chaos in a delayed feedback semiconductor laser via dual-wedges. Acta Physica Sinica, 2008, 57(5): 2827-2831. doi: 10.7498/aps.57.2827
    [15] Yan Sen-Lin. Controlling chaos in a semiconductor laser via photoelectric delayed negative-feedback. Acta Physica Sinica, 2008, 57(4): 2100-2106. doi: 10.7498/aps.57.2100
    [16] Wang Yun-Cai, Li Yan-Li, Wang An-Bang, Wang Bing-Jie, Zhang Geng-Wei, Guo Ping. High frequency message filtering characteristics of semiconductor laser as receiver in optical chaos communications. Acta Physica Sinica, 2007, 56(8): 4686-4693. doi: 10.7498/aps.56.4686
    [17] Wang Yun-Cai, Zhang Geng-Wei, Wang An-Bang, Wang Bing-Jie, Li Yan-Li, Guo Ping. Bandwidth enhancement of semiconductor laser as a chaotic transmitter by external light injection. Acta Physica Sinica, 2007, 56(8): 4372-4377. doi: 10.7498/aps.56.4372
    [18] Yan Sen-Lin. Studies on chaotic modulation performance and internal phase shifting key encoding in injection semiconductor lasers. Acta Physica Sinica, 2006, 55(12): 6267-6274. doi: 10.7498/aps.55.6267
    [19] Yan Sen-Lin. Chaotic controlling via phase periodicity in optical injection semiconductor lasers. Acta Physica Sinica, 2006, 55(10): 5109-5114. doi: 10.7498/aps.55.5109
    [20] Huang Liang-Yu, Luo Xiao-Shu, Fang Jin-Qing, Zhao Yi-Bo, Tang Guo-Ning. Controlling chaotic dynamical behavior of a semiconductor laser with external optical feedback using sliding mode variable structure control scheme. Acta Physica Sinica, 2005, 54(2): 543-549. doi: 10.7498/aps.54.543
Metrics
  • Abstract views:  4829
  • PDF Downloads:  254
  • Cited By: 0
Publishing process
  • Received Date:  06 May 2016
  • Accepted Date:  02 August 2016
  • Published Online:  05 October 2016

/

返回文章
返回