Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Luminescence selective output characteristics tuned by laser pulse width in Tm3+ doped NaYF4 nanorods

Zhang Xiang-Yu Wang Jin-Guo Xu Chun-Long Pan Yuan Hou Zhao-Yang Ding Jian Cheng Lin Gao Dang-Li

Citation:

Luminescence selective output characteristics tuned by laser pulse width in Tm3+ doped NaYF4 nanorods

Zhang Xiang-Yu, Wang Jin-Guo, Xu Chun-Long, Pan Yuan, Hou Zhao-Yang, Ding Jian, Cheng Lin, Gao Dang-Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The variations in material composition, phase and structure can provide a useful tool for tuning emission colour, but the controlling of the emission colour in a material, with a composition fixed, remains to be a daunting challenge. In this work, we systematically study the luminescence selective output characteristics of Tm3+ doped NaYF4 nanorods, and also the dependences of fluerecence output on pulse duration, excitation wavelength, pump power, and ambient temperature. The results show that the color of output light is strongly dependent on laser pulse duration compared with other factors. The temperature dependent luminescence of the nanorods shows very different behaviors with short-pulse laser excitation from those of continuous wave (CW) laser. When the pulse laser at 656 nm is employed, the emission spectra from NaYF4:0.5 mol% Tm3+ nanorods at the different temperatures are dominated by near-infrared (NIR) luminescence about 800 nm accompanied with weak blue luminescence, giving rise to nearly spectrally-pure NIR emissions at 20 K. When the pulse laser is replaced by CW laser, blue double emissions at 453 and 478 nm with the same order of magnitude of NIR luminescence can be clearly detected at room temperature. The key mechanism responsible for colour-tunable emission can be explained in terms of the population process of luminescence level, in which the different luminescence level populations need different time intervals. Considering excited-state absorption (ESA) for a particular 1D2 energy level, there needs an extra step of 3F2, 33H4 multiphonon nonradiation relaxation process to populate the 3H4 state and subsequently pump its 1D2 state for blue emission. Therefore, the pulse width should be longer than nonradiation relaxation time of 3F2, 33H4 to comply with the ESA, while the nonradiation relaxation time can further be tuned by controlling ambient temperature. We show that the variation of the excitation power leads to interesting change in the upconversion (UC) decay curve. We focus our attention on the excitation wavelength dependences of 3H4 and 1D2 emission lifetimes in order to validate the population mechanism of luminescence level. We demonstrate that the 3H4 luminescence time depends on excitation wavelength, while 1D2 emission lifetime nearly keeps constant when varying the excitation wavelength. Based on multi-phonon relaxation theory and time-resolved photoluminescence studies, it is indicated that the UC luminescence under short-pulse laser excitation mainly originates from the ions at/near the surface, while downconversion is mainly from the ions in the core for NaYF4:Tm3+ nanorods. The single-band NIR luminescence output by changing the pulse width and excitation wavelength provides an insight into the controlling of the population processes of luminescent levels and offers a versatile approach to tuning the spectral output.
      Corresponding author: Zhang Xiang-Yu, xyzhang@chd.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51101022), the Plan Project of Youth Science and Technology New Star of Shaanxi Province, China (Grant No. 2015KJXX-33), the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2014JQ1008, 2014JM2-5066), and the Fundamental Research Fund for the Central Universities, China (Grant Nos. 2013G1121085, 310812152001).
    [1]

    Feng W, Zhu X J, Li F Y 2015 NPG Asia Mater. 5 e75

    [2]

    Haase M, Schafer H 2011 Angew. Chem. Int. Ed. 50 5808

    [3]

    Ding Y, Gu J, Zhang Y W, Sun L D, Yan C H 2012 Sci. Sin.:Technol. 42 1(in Chinese)[丁祎, 顾均, 张亚文, 孙聆东, 严纯华2012中国科学:技术科学42 1]

    [4]

    Li C X, Lin J 2010 J. Mater. Chem. 20 6831

    [5]

    Kramer K W, Biner D, Frei G, Gudel H U, Hehlen M P, Luthi S R 2004 Chem. Mater. 16 1244

    [6]

    Su Q Q, Han S Y, Xie X J, Zhu H M, Chen H Y, Chen C K, Liu R S, Chen X Y, Wang F, Liu X G 2012 J. Am. Chem. Soc. 134 20849

    [7]

    Qian H S, Zhang Y 2008 Langumuir 24 12123

    [8]

    Johnson N J, Korinek A, Dong C, van Veggel F C J M 2012 J. Am. Chem. Soc. 134 11068

    [9]

    Nyk M, Kumar R, Ohulchanskyy T Y, Flask C A, Prasad P N 2012 Chem. Eur. J. 18 5558

    [10]

    Zhang F, Che R C, Li X M, Yao C, Yang J P, Shen D K, Hu P, Li W, Zhao D Y 2012 Nano Lett. 12 2852

    [11]

    Zheng W, Tu D T, Liu Y S, Luo W Q, Ma E, Zhu H M, Chen X Y 2014 Sci. Sin.:Chim. 44 168(in Chinese)[郑伟, 涂大涛, 刘永升, 罗文钦, 马恩, 朱浩淼, 陈学元2014中国科学:化学44 168]

    [12]

    Gai S L, Li C X, Yang P P, Lin J 2014 Chem. Rev. 114 2343

    [13]

    Sun L D, Wang Y F, Yan C H 2014 Acc. Chem. Res. 47 1001

    [14]

    Chen G Y, Yang C H, Prasad P N 2013 Acc. Chem. Res. 46 1474

    [15]

    Li X M, Zhang F, Zhao D Y 2013 Nano Today 8 643

    [16]

    Zheng H R, Gao D L, Fu Z X, Wang E K, Lei Y, Tuan Y, Cui M 2011 J. Lumin. 131 423

    [17]

    Xu C L, Wang J G, Zhang X Y 2015 Acta Phys.-Chim. Sin. 31 2183(in Chinese)[徐春龙, 王晋国, 张翔宇2015物理化学学报31 2183]

    [18]

    Sun J S, Li S W, Shi L L, Zhou T M, Li X P, Zhang J S, Cheng L H, Chen B J 2015 Acta Phys. Sin. 64 243301 (in Chinese)[孙佳石, 李树伟, 石琳琳, 周天民, 李香萍, 张金苏, 程丽红, 陈宝玖2015物理学报64 243301]

    [19]

    Gao D L, Zhang X Y, Zheng H R, Shi P, Li L, Ling Y W 2013 Dalton Trans. 42 1834

    [20]

    Zhang X Y, Wang M Q, Ding J J, Gao D L, Shi Y H, Song X H 2012 Crystengcomm 14 8357

    [21]

    Yang J Z, Qiu J B, Yang Z W, Song Z G, Yang Y, Zhou D C 2015 Acta Phys. Sin. 64 138101 (in Chinese)[杨健芝, 邱建备, 杨正文, 宋志国, 杨勇, 周大成2015物理学报64 138101]

    [22]

    Gao D L, Tian D P, Zhang X Y, Gao W 2016 Sci. Rep. 6 22433

    [23]

    Chatterjeea D K, Rufaihaha A J, Zhang Y 2008 Biomaterials 29 937

    [24]

    Shen J, Chen G, Vu A M, Fan W, Bilsel O S, Chang C C, Han G 2013 Adv. Opt. Mater. 1 644

    [25]

    Wang Y F, Liu G Y, Sun L D, Xiao J W, Zhou J C, Yan C H 2013 ACS Nano 7 7200

    [26]

    Xie X J, Gao N Y, Deng R R, Sun Q, Xu Q H, Liu X G 2013 J. Am. Chem. Soc. 135 12608

    [27]

    Zhong Y T, Tian G, Gu Z J, Yang Y J, Gu L, Zhao Y L, Ma Y, Yao J N 2014 Adv. Mater. 26 2831

    [28]

    Li X M, Wang R, Zhang F, Zhou L, Shen D K, Yao C, Zhao D Y 2013 Sci. Rep. 3 3536

    [29]

    Gao D L, Zhang X Y, Gao W 2013 ACS Appl. Mater. Interfaces 5 9732

    [30]

    Tian D P, Gao D L, Chong B, Liu X Z 2015 Dalton Trans. 44 4133

    [31]

    Wang J, Wang F, Wang C, Liu Z, Liu X G 2011 Angew. Chem. Int. Ed. 50 10369

    [32]

    Gao D L, Zhang X Y, Gao W 2012 J. Appl. Phys. 111 033505

    [33]

    Gao D L, Tian D, Xiao G, Chong B, Yu G, Pang Q 2015 Opt. Lett. 40 3580

    [34]

    Zhang X Y, Gao D L, Li L 2010 J. Appl. Phys. 107 123528

    [35]

    Gao D L, Zheng H R, Tian Y, Cui M, Lei Y, He E J, Zhang X S 2010 J. Nanosci. Nanotechnol. 10 7694

    [36]

    Gao D L, Tian D P, Chong B, Li L, Zhang X Y 2016 J. Alloys Compd. 678 212

    [37]

    Zheng H R, Gao D L, Zhang X Y, He E J, Zhang X S 2008 J. Appl. Phys. 104 3506

    [38]

    Pollnau M, Gamelin D R, Lthi S R, Gdel H U, Hehlen M P 2000 Phys. Rev. B 61 3337

    [39]

    Wang F, Liu X 2009 Chem. Soc. Rev. 38 976

    [40]

    Pan Z, Morgan S H, Dyer K, Ueda A, Liu H 1996 J. Appl. Phys. 79 8906

  • [1]

    Feng W, Zhu X J, Li F Y 2015 NPG Asia Mater. 5 e75

    [2]

    Haase M, Schafer H 2011 Angew. Chem. Int. Ed. 50 5808

    [3]

    Ding Y, Gu J, Zhang Y W, Sun L D, Yan C H 2012 Sci. Sin.:Technol. 42 1(in Chinese)[丁祎, 顾均, 张亚文, 孙聆东, 严纯华2012中国科学:技术科学42 1]

    [4]

    Li C X, Lin J 2010 J. Mater. Chem. 20 6831

    [5]

    Kramer K W, Biner D, Frei G, Gudel H U, Hehlen M P, Luthi S R 2004 Chem. Mater. 16 1244

    [6]

    Su Q Q, Han S Y, Xie X J, Zhu H M, Chen H Y, Chen C K, Liu R S, Chen X Y, Wang F, Liu X G 2012 J. Am. Chem. Soc. 134 20849

    [7]

    Qian H S, Zhang Y 2008 Langumuir 24 12123

    [8]

    Johnson N J, Korinek A, Dong C, van Veggel F C J M 2012 J. Am. Chem. Soc. 134 11068

    [9]

    Nyk M, Kumar R, Ohulchanskyy T Y, Flask C A, Prasad P N 2012 Chem. Eur. J. 18 5558

    [10]

    Zhang F, Che R C, Li X M, Yao C, Yang J P, Shen D K, Hu P, Li W, Zhao D Y 2012 Nano Lett. 12 2852

    [11]

    Zheng W, Tu D T, Liu Y S, Luo W Q, Ma E, Zhu H M, Chen X Y 2014 Sci. Sin.:Chim. 44 168(in Chinese)[郑伟, 涂大涛, 刘永升, 罗文钦, 马恩, 朱浩淼, 陈学元2014中国科学:化学44 168]

    [12]

    Gai S L, Li C X, Yang P P, Lin J 2014 Chem. Rev. 114 2343

    [13]

    Sun L D, Wang Y F, Yan C H 2014 Acc. Chem. Res. 47 1001

    [14]

    Chen G Y, Yang C H, Prasad P N 2013 Acc. Chem. Res. 46 1474

    [15]

    Li X M, Zhang F, Zhao D Y 2013 Nano Today 8 643

    [16]

    Zheng H R, Gao D L, Fu Z X, Wang E K, Lei Y, Tuan Y, Cui M 2011 J. Lumin. 131 423

    [17]

    Xu C L, Wang J G, Zhang X Y 2015 Acta Phys.-Chim. Sin. 31 2183(in Chinese)[徐春龙, 王晋国, 张翔宇2015物理化学学报31 2183]

    [18]

    Sun J S, Li S W, Shi L L, Zhou T M, Li X P, Zhang J S, Cheng L H, Chen B J 2015 Acta Phys. Sin. 64 243301 (in Chinese)[孙佳石, 李树伟, 石琳琳, 周天民, 李香萍, 张金苏, 程丽红, 陈宝玖2015物理学报64 243301]

    [19]

    Gao D L, Zhang X Y, Zheng H R, Shi P, Li L, Ling Y W 2013 Dalton Trans. 42 1834

    [20]

    Zhang X Y, Wang M Q, Ding J J, Gao D L, Shi Y H, Song X H 2012 Crystengcomm 14 8357

    [21]

    Yang J Z, Qiu J B, Yang Z W, Song Z G, Yang Y, Zhou D C 2015 Acta Phys. Sin. 64 138101 (in Chinese)[杨健芝, 邱建备, 杨正文, 宋志国, 杨勇, 周大成2015物理学报64 138101]

    [22]

    Gao D L, Tian D P, Zhang X Y, Gao W 2016 Sci. Rep. 6 22433

    [23]

    Chatterjeea D K, Rufaihaha A J, Zhang Y 2008 Biomaterials 29 937

    [24]

    Shen J, Chen G, Vu A M, Fan W, Bilsel O S, Chang C C, Han G 2013 Adv. Opt. Mater. 1 644

    [25]

    Wang Y F, Liu G Y, Sun L D, Xiao J W, Zhou J C, Yan C H 2013 ACS Nano 7 7200

    [26]

    Xie X J, Gao N Y, Deng R R, Sun Q, Xu Q H, Liu X G 2013 J. Am. Chem. Soc. 135 12608

    [27]

    Zhong Y T, Tian G, Gu Z J, Yang Y J, Gu L, Zhao Y L, Ma Y, Yao J N 2014 Adv. Mater. 26 2831

    [28]

    Li X M, Wang R, Zhang F, Zhou L, Shen D K, Yao C, Zhao D Y 2013 Sci. Rep. 3 3536

    [29]

    Gao D L, Zhang X Y, Gao W 2013 ACS Appl. Mater. Interfaces 5 9732

    [30]

    Tian D P, Gao D L, Chong B, Liu X Z 2015 Dalton Trans. 44 4133

    [31]

    Wang J, Wang F, Wang C, Liu Z, Liu X G 2011 Angew. Chem. Int. Ed. 50 10369

    [32]

    Gao D L, Zhang X Y, Gao W 2012 J. Appl. Phys. 111 033505

    [33]

    Gao D L, Tian D, Xiao G, Chong B, Yu G, Pang Q 2015 Opt. Lett. 40 3580

    [34]

    Zhang X Y, Gao D L, Li L 2010 J. Appl. Phys. 107 123528

    [35]

    Gao D L, Zheng H R, Tian Y, Cui M, Lei Y, He E J, Zhang X S 2010 J. Nanosci. Nanotechnol. 10 7694

    [36]

    Gao D L, Tian D P, Chong B, Li L, Zhang X Y 2016 J. Alloys Compd. 678 212

    [37]

    Zheng H R, Gao D L, Zhang X Y, He E J, Zhang X S 2008 J. Appl. Phys. 104 3506

    [38]

    Pollnau M, Gamelin D R, Lthi S R, Gdel H U, Hehlen M P 2000 Phys. Rev. B 61 3337

    [39]

    Wang F, Liu X 2009 Chem. Soc. Rev. 38 976

    [40]

    Pan Z, Morgan S H, Dyer K, Ueda A, Liu H 1996 J. Appl. Phys. 79 8906

  • [1] Meng Yong-Jun, Li Hong, Tang Jian-Wei, Chen Xue-Wen. Modulation of upconversion luminescence spectrum of single rare-earth-doped upconversion nanocrystal based on plasmonic nanocavity. Acta Physica Sinica, 2022, 71(2): 027801. doi: 10.7498/aps.71.20211438
    [2] Xu Zhuo, Guo Jing-Yuan, Xiong Zheng-Ye, Tang Qiang, Gao Mu. Luminescence spectra and energy transfer of Tm3+ and Tb3+ doped in LiMgPO4 phosphors. Acta Physica Sinica, 2021, 70(16): 167801. doi: 10.7498/aps.70.20210357
    [3] Modulation of the upconversion luminescence spectrum of a single rare-earth-doped upconversion nanocrystal based on plasmonic nanocavity. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211438
    [4] Gao Wei, Wang Bo-Yang, Han Qing-Yan, Han Shan-Shan, Cheng Xiao-Tong, Zhang Chen-Xue, Sun Ze-Yu, Liu Lin, Yan Xue-Wen, Wang Yong-Kai, Dong Jun. Building vertical gold nanorod arrays to enhance upconversion luminescence of β-NaYF4: Yb3+/Er3+ nanocrystals. Acta Physica Sinica, 2020, 69(18): 184213. doi: 10.7498/aps.69.20200575
    [5] Zhang Xiang-Yu, Wang Dan, Shi Huan-Wen, Wang Jin-Guo, Hou Zhao-Yang, Zhang Li-Dong, Gao Dang-Li. Effect of host matrix on Yb3+ concentration controlled red to green luminescence ratio. Acta Physica Sinica, 2018, 67(8): 084203. doi: 10.7498/aps.67.20171894
    [6] Zhang Cun-Bo, Yan Tao, Yang Zhi-Qiang, Ren Wei-Tao, Zhu Zhan-Ping. heoretical model of influence of frequency on thermal breakdown in semiconductor device. Acta Physica Sinica, 2017, 66(1): 018501. doi: 10.7498/aps.66.018501
    [7] Sun Hua-Juan, Yan Xiao-Hong, Hao Xue-Yuan. A method of adaptive pulse width modulation for multiple-valued data transmission. Acta Physica Sinica, 2015, 64(1): 018402. doi: 10.7498/aps.64.018402
    [8] Hao Xiang, Xie Rui-Liang, Yang Xu, Liu Tao, Huang Lang. Bifurcation and chaos in sliding mode controlled first-order h-bridge inverter based on pulse width modulation. Acta Physica Sinica, 2013, 62(20): 200503. doi: 10.7498/aps.62.200503
    [9] Zhang Pan-Jun, Sun Hui-Qing, Guo Zhi-You, Wang Du-Yang, Xie Xiao-Yu, Cai Jin-Xin, Zheng Huan, Xie Nan, Yang Bin. The spectrum-control of dual-wavelength LED with quantum dots planted in quantum wells. Acta Physica Sinica, 2013, 62(11): 117304. doi: 10.7498/aps.62.117304
    [10] Gao Dang-Li, Zhang Xiang-Yu, Zhang Zheng-Long, Xu Liang-Min, Lei Yu, Zheng Hai-Rong. Improvement on the up-conversion fluorescence emission in Tm3+ doped optical materials by adjusting phonon distribution. Acta Physica Sinica, 2009, 58(9): 6108-6112. doi: 10.7498/aps.58.6108
    [11] Yang Zeng-Qiang, Zhou Xiao-Xin. Controlling pulse duration of two-pulse laser to enhance alignment of N2 molecules. Acta Physica Sinica, 2008, 57(7): 4099-4103. doi: 10.7498/aps.57.4099
    [12] Liu Shi-Jie, Ma Jian-Yong, Shen Zi-Cai, Kong Wei-Jin, Shen Jian, Jin Yun-Xia, Zhao Yuan-An, Shao Jian-Da, Fan Zheng-Xiu. Performance of multilayer dielectric grating irradiated by ultrashort optical pulse. Acta Physica Sinica, 2007, 56(8): 4542-4549. doi: 10.7498/aps.56.4542
    [13] Tan Hao, Song Feng, Su Jing, Shang Mei-Ru, Fu Bo, Zhang Guang-Yin, Cheng Zhen-Xiang, Chen Huan-Chu. Upconversion luminescence and Spectra characteristics of Er3+, Tm3+ co-doped NaY(WO4)2 crystal. Acta Physica Sinica, 2004, 53(2): 631-635. doi: 10.7498/aps.53.631
    [14] Mao Yan-Li, Zhao Zhi-Wei, Deng Pei-Zhen, Gan Fu-Xi. Temperature and selective excitation properties of the spectra for Yb:FAP and Yb:C3S2-FAP crystals. Acta Physica Sinica, 2004, 53(5): 1524-1528. doi: 10.7498/aps.53.1524
    [15] Chen Shu-Qi, Liu Zhi-Bo, Zhou Wen-Yuan, Tian Jian-Guo Zang Wei-Ping, Zang Wei-Ping, Song Feng, Zhang Chun-Ping. The influence of pulse width on transient thermally induced optical nonlinearities in a Kerr nonlinear medium. Acta Physica Sinica, 2004, 53(10): 3577-3582. doi: 10.7498/aps.53.3577
    [16] Luo Xiang-Dong, Bian Li-Feng, Xu Zhong-Ying, Luo Hai-Lin, Wang Yu-Qi, Wang Jian-Nong, Ge Wei-Kun. Study of optical properties in GaAs1-xSbx/GaAssingle quant um wells. Acta Physica Sinica, 2003, 52(7): 1761-1765. doi: 10.7498/aps.52.1761
    [17] YIN MIN, J.C. KRUPA. SITE SYMMETRY DETERMINATION AND SELECTIVE EXCITATION SPECTROSCOPY OF Eu3+:ThO2 CRYSTAL. Acta Physica Sinica, 2000, 49(9): 1859-1866. doi: 10.7498/aps.49.1859
    [18] YIN MIN, LOU LI-REN, ZHANG WEI-PING, XIA SHANG-DA, J.C.KRUPA. PREPARATION AND SITE SELECTIVELY EXCITED LUMINESCENCE OF NANOMETRIC SCALE X1-Y2SiO5∶Eu. Acta Physica Sinica, 1998, 47(7): 1207-1212. doi: 10.7498/aps.47.1207
    [19] CHEN SHU-CHUN, DAI FENG-MEI. SELECTIVE EXCITATION OF NARROW LINES IN Nd3+ DOPED LASER GLASSES. Acta Physica Sinica, 1981, 30(4): 497-502. doi: 10.7498/aps.30.497
    [20] LIN JIN-GU, LIU CHENG-HUI, ZHU ZHEN-HE, LAI RUI-SHENG, HUO CHONG-RU. PULSE WIDTH MEASUREMENT OF THE PASSIVELY MODE-LOCKED Nd:YAG LASER BY NONCOLLINEAR SHG METHOD. Acta Physica Sinica, 1980, 29(3): 406-408. doi: 10.7498/aps.29.406
Metrics
  • Abstract views:  4738
  • PDF Downloads:  246
  • Cited By: 0
Publishing process
  • Received Date:  16 May 2016
  • Accepted Date:  23 July 2016
  • Published Online:  05 October 2016

/

返回文章
返回