Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nonuniform Laguerre-Gaussian correlated beam and its propagation properties

Yu Jia-Yi Chen Ya-Hong Cai Yang-Jian

Citation:

Nonuniform Laguerre-Gaussian correlated beam and its propagation properties

Yu Jia-Yi, Chen Ya-Hong, Cai Yang-Jian
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The conventional partially coherent beam has a Gaussian correlated Schell-model function. In 2007, Gori and Santarsiero[Gori F, Santarsiero M 2007 Opt. Lett. 32 3531] discussed the sufficient condition for devising a genuine correlation function of a partially coherent beam. Since then, a variety of partially coherent beams with nonconventional correlation functions, such as nonuniform correlated beam, Hermite-Gaussian correlated beam, Laguerre-Gaussian correlated beam and beam with optical coherence lattices, have been introduced, and such beams display many extraordinary propagation properties, such as self-focusing, self-shifting, self-splitting, self-shaping and periodicity reciprocity, and they have useful applications in many areas, such as free-space optical communication, particle trapping, image transmission and optical encryption.In most of previous studies, the correlation function of the partially coherent beam was assumed to be isotropic. In this paper, we introduce a new kind of partially coherent beam with anisotropic correlation function, which is named nonuniform Laguerre-Gaussian correlated(NLGC) beam. The NLGC beam has a nonuniform correlated function in the x-direction and Laguerre-Gaussian correlated Schell-model function in the y-direction. Furthermore, we explore the propagation properties of the NLGC beam in free space and in turbulent atmosphere comparatively with the help of the extended Huygens-Fresnel integral. In free space, it is found that the intensity distribution of the NLGC beam displays self-focusing and self-shifting behaviors in the x-direction and self-splitting properties in the y-direction during its propagation, which may be useful for particle trapping, and the distribution of the degree of coherence also varies during its propagation. In turbulent atmosphere, the NLGC beam displays similar propagation properties at short propagation distance because the influence of turbulence can be neglected, while with the further increase of the propagation distance, the influence of turbulence accumulates and both the intensity distribution and the degree of coherence distribution evolve into Gaussian profiles. We also find that the evolution properties of the intensity distribution and the degree of coherence are closely related to the mode order m of the correlation function, e.g. the intensity distribution and the degree of coherence distribution evolve into Gaussian profiles more slowly as the mode order m increases, which means that the NLGC beam with larger m is less affected by turbulence, which may be useful in free-space optical communication.Our results clearly show that modulating the correlation function of a partially coherent beam provides a novel way of manipulating its propagation properties, and will be useful in many applications, where light beam is required to possess a prescribed beam profile and controlled propagation properties. In this paper, only the NLGC beam is treated theoretically, and such a beam deserves further experimental investigation.
      Corresponding author: Cai Yang-Jian, yangjiancai@suda.edu.cn
    • Funds: Project supported by the National Natural Science Fund for Distinguished Young Scholar(Grant No. 11525418), the National Natural Science Foundation of China(Grant No. 11274005), and the Project of the Priority Academic Program Development(PAPD) of Jiangsu Higher Education Institutions, China.
    [1]

    Kato Y, Mima K, Miyanaga N, Arinaga S, Kitagawa Y, Nakatsuka M, Yamanaka C 1984 Phys. Rev. Lett. 53 1057

    [2]

    Kermisch D 1975 J. Opt. Soc. Am. 65 887

    [3]

    Cai Y J, Zhu S Y 2005 Phys. Rev. E 71 056607

    [4]

    Dong Y M, Wang F, Zhao C L, Cai Y J 2012 Phys. Rev. A 86 013840

    [5]

    Ricklin J C, Davidson F M 2012 Nat. Photon. 6 355

    [6]

    Mandel L, Wolf E 1995 Optical Coherence and Quantum Optic s(Cambridge:Cambridge University Press) pp33-39

    [7]

    Gori F, Santarsiero M 2007 Opt. Lett. 32 3531

    [8]

    Gori F, Sanchez V R, Santarsiero M, Shirai T 2009 J. Opt. A 11 085706

    [9]

    Lajunen H, Saastamoinen T 2011 Opt. Lett. 36 4104

    [10]

    Chen Y H, Gu J X, Wang F, Cai Y J 2015 Opt. Express 23 13467

    [11]

    Sahin S, Korotkova O 2012 Opt. Lett. 37 2970

    [12]

    Ma L, Ponomarenko S A 2014 Opt. Lett. 39 6656

    [13]

    Chen Y H, Ponomarenko S A, Cai Y J 2016 Appl. Phys. Lett. 109 061107

    [14]

    Mei Z R, Korotkova O 2013 Opt. Lett. 38 91

    [15]

    Wang F, Liu X L, Yuan Y S, Cai Y J 2013 Opt. Lett. 38 1814

    [16]

    Chen Y H, Cai Y J 2014 Opt. Lett. 39 2549

    [17]

    Chen Y H, Wang F, Liu L, Zhao C L, Cai Y J, Korotkova O 2014 Phys. Rev. A 89 013801

    [18]

    Yuan Y S, Liu X L, Wang F, Chen Y H, Cai Y J, Qu J, Eyyuboğu H T 2013 Opt. Commun. 305 57

    [19]

    Tong Z S, Korotkova O 2012 Opt. Lett. 37 3240

    [20]

    Gu Y L, Gbur G 2013 Opt. Lett. 38 1395

    [21]

    Brown D P, Brown T G 2008 Opt. Express 16 20418

    [22]

    Liu X Y, Zhao D M 2015 Opt. Commun. 354 250

    [23]

    Chen Y H, Yu J Y, Yuan Y S, Wang F, Cai Y J 2013 Opt. Lett. 38 4821

    [24]

    Andrews L C, Phillips R L, Hopen C Y 2001 Laser Beam Scintillation with Applications (Vol. 99)(Washington:SPIE Press) pp35-37

    [25]

    Gbur G 2014 J. Opt. Soc. Am. A 31 2038

    [26]

    Wang F, Liu X L, Cai Y J 2015 Prog. Electromagn. Res. 150 123

  • [1]

    Kato Y, Mima K, Miyanaga N, Arinaga S, Kitagawa Y, Nakatsuka M, Yamanaka C 1984 Phys. Rev. Lett. 53 1057

    [2]

    Kermisch D 1975 J. Opt. Soc. Am. 65 887

    [3]

    Cai Y J, Zhu S Y 2005 Phys. Rev. E 71 056607

    [4]

    Dong Y M, Wang F, Zhao C L, Cai Y J 2012 Phys. Rev. A 86 013840

    [5]

    Ricklin J C, Davidson F M 2012 Nat. Photon. 6 355

    [6]

    Mandel L, Wolf E 1995 Optical Coherence and Quantum Optic s(Cambridge:Cambridge University Press) pp33-39

    [7]

    Gori F, Santarsiero M 2007 Opt. Lett. 32 3531

    [8]

    Gori F, Sanchez V R, Santarsiero M, Shirai T 2009 J. Opt. A 11 085706

    [9]

    Lajunen H, Saastamoinen T 2011 Opt. Lett. 36 4104

    [10]

    Chen Y H, Gu J X, Wang F, Cai Y J 2015 Opt. Express 23 13467

    [11]

    Sahin S, Korotkova O 2012 Opt. Lett. 37 2970

    [12]

    Ma L, Ponomarenko S A 2014 Opt. Lett. 39 6656

    [13]

    Chen Y H, Ponomarenko S A, Cai Y J 2016 Appl. Phys. Lett. 109 061107

    [14]

    Mei Z R, Korotkova O 2013 Opt. Lett. 38 91

    [15]

    Wang F, Liu X L, Yuan Y S, Cai Y J 2013 Opt. Lett. 38 1814

    [16]

    Chen Y H, Cai Y J 2014 Opt. Lett. 39 2549

    [17]

    Chen Y H, Wang F, Liu L, Zhao C L, Cai Y J, Korotkova O 2014 Phys. Rev. A 89 013801

    [18]

    Yuan Y S, Liu X L, Wang F, Chen Y H, Cai Y J, Qu J, Eyyuboğu H T 2013 Opt. Commun. 305 57

    [19]

    Tong Z S, Korotkova O 2012 Opt. Lett. 37 3240

    [20]

    Gu Y L, Gbur G 2013 Opt. Lett. 38 1395

    [21]

    Brown D P, Brown T G 2008 Opt. Express 16 20418

    [22]

    Liu X Y, Zhao D M 2015 Opt. Commun. 354 250

    [23]

    Chen Y H, Yu J Y, Yuan Y S, Wang F, Cai Y J 2013 Opt. Lett. 38 4821

    [24]

    Andrews L C, Phillips R L, Hopen C Y 2001 Laser Beam Scintillation with Applications (Vol. 99)(Washington:SPIE Press) pp35-37

    [25]

    Gbur G 2014 J. Opt. Soc. Am. A 31 2038

    [26]

    Wang F, Liu X L, Cai Y J 2015 Prog. Electromagn. Res. 150 123

  • [1] Fan Hai-Ling, Guo Zhi-Jian, Li Ming-Qiang, Zhuo Hong-Bin. Numerical study of self-focusing and filament formation of intense vortex beams in plasmas. Acta Physica Sinica, 2023, 72(1): 014206. doi: 10.7498/aps.72.20221232
    [2] Chen Kang, Ma Zhi-Yuan, Zhang Ming-Ming, Dou Jian-Tai, Hu You-You. Propagation properties of partially coherent power-exponent-phase vortex beam. Acta Physica Sinica, 2022, 71(1): 014203. doi: 10.7498/aps.71.20211411
    [3] The Propagation Characteristics of Partially Coherent Power-Exponent-Phase-Vortex Beam*. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211411
    [4] Wang Fei, Yu Jia-Yi, Liu Xian-Long, Cai Yang-Jian. Research progress of partially coherent beams propagation in turbulent atmosphere. Acta Physica Sinica, 2018, 67(18): 184203. doi: 10.7498/aps.67.20180877
    [5] Zhu Jie, Tang Hui-Qin, Li Xiao-Li, Liu Xiao-Qin. Propagation properties of nonuniform cosine-Gaussian correlated Bessel-Gaussian beam through paraxial ABCD system and generation of dark-hollow beam array. Acta Physica Sinica, 2017, 66(16): 164202. doi: 10.7498/aps.66.164202
    [6] Zheng Shang-Bin, Tang Bi-Hua, Jiang Yun-Hai, Luo Ya-Mei, Gao Zeng-Hui. Spectral Stokes singularities of partially coherent edge dislocation beams. Acta Physica Sinica, 2016, 65(1): 014202. doi: 10.7498/aps.65.014202
    [7] Lin Feng, Tan Chao, Zhou Yuan, Fu Xi-Quan. Nonlinear focusing of weak beam by another high power laser. Acta Physica Sinica, 2013, 62(14): 144208. doi: 10.7498/aps.62.144208
    [8] Chen Xue-Qiong, Chen Zi-Yang, Pu Ji-Xiong, Zhu Jian-Qiang, Zhang Guo-Wen. Intensity distribution of the flat-topped beam propagating through the thick nonlinear medium with defects. Acta Physica Sinica, 2013, 62(4): 044213. doi: 10.7498/aps.62.044213
    [9] Su Dong, Tang Chang-Jian. Self-focus and transmission of relativistic electron beam in a dynamically loaded plasma. Acta Physica Sinica, 2012, 61(4): 042501. doi: 10.7498/aps.61.042501
    [10] Kang Yi-Fan, Lu Ke-Qing, Hu Man-Li, Kang Xiao-Hui, Zhang Mei-Zhi, Wang Chao, Zhou Li-Bin, Chen Xing. Experimental study of bright photovoltaic solitons in lithium niobate crystal. Acta Physica Sinica, 2008, 57(6): 3547-3552. doi: 10.7498/aps.57.3547
    [11] Liu Jun, Chen Xiao-Wei, Liu Jian-Sheng, Leng Yu-Xin, Zhu Yi, Dai Jun, Li Ru-Xin, Xu Zhi-Zhan. Properties of the propagation of negatively chirped femtosecond pulses in normally dispersive media. Acta Physica Sinica, 2006, 55(4): 1821-1826. doi: 10.7498/aps.55.1821
    [12] Wang Wei-Min, Zheng Chun-Yang. Self-focusing of ultra-intense short laser pulses in plasmas with various density distributions. Acta Physica Sinica, 2006, 55(1): 310-320. doi: 10.7498/aps.55.310
    [13] Zhuo Hong-Bin, Hu Qing-Feng, Liu Jie, Chi Li-Hua, Zhang Wen-Yong. Quasi-static particle simulation of short pulse laser-plasma interaction. Acta Physica Sinica, 2005, 54(1): 197-201. doi: 10.7498/aps.54.197
    [14] Huang Chun-Fu, Guo Ru, Liu Si-Min, Shu Qiang, Gao Yuan-Mei, Wan Da-Yun, Liu Zhao-Hong, Zhang Xiao-Hua, Lu Yi. Influence of dark irradiation on transition process from self-defocusing to self-focusing in LiNbO3:Fe crystals. Acta Physica Sinica, 2004, 53(5): 1367-1372. doi: 10.7498/aps.53.1367
    [15] Wen Shuang-Chun, Qian Lie-Jia, Fan Dian-Yuan. A study on multiple filamentation of locally modulated laser beams. Acta Physica Sinica, 2003, 52(7): 1640-1644. doi: 10.7498/aps.52.1640
    [16] Wang Da-Yun, Liu Si-Min, Chen Xiao-Hu, Zhao Hong-E, Guo Ru, Yang Li-Sen, Gao Yuan-Mei, Huang Chun-Fu, Lu Yi. The influence and control of incoherent irradiation on photorefractive nonlinearity of LiNbO3:Fe crystal. Acta Physica Sinica, 2003, 52(2): 395-400. doi: 10.7498/aps.52.395
    [17] Liu Si-Min, Wang Da-Yun, Zhao Hong-E, Li Zhu-Bin, Guo Ru, Lu Yi, Huang Chun-Fu, Gao Yuan-Mei. The dynamic conversion from self-defocusing to self-focusing and the phase conjugate bright spatial soliton*. Acta Physica Sinica, 2002, 51(12): 2761-2766. doi: 10.7498/aps.51.2761
    [18] JIANG YING, LIU SIMIN, WEN HAI-DONG, ZHANG XIN-ZHENG, GUO RU, CHEN XIAO-HU, XU JING-JUN, ZHANG GUANG-YIN. DYNAMIC CONVERSION FROM SELF-DEFOCUSING TO EQUIVALENT “SELF-FOCUSING” IN PHOTOVOLTAIC LiNbO3:Fe CRYSTALS. Acta Physica Sinica, 2001, 50(3): 483-488. doi: 10.7498/aps.50.483
    [19] FANG GUANG-YU, SONG YING-LIN, WANG YU-XIAO, ZHANG XUE-RU, QU SHI-LIANG, LI CHUN-FEI, SONG LI-CHENG, HU QING-MEI, LIU PENG-CHENG. SELF FOCUSING-SELF DEFOCUSING TRANSFORMATION IN AN ORGANOMETALIC FULLERENE-C60 DERIVATIVE. Acta Physica Sinica, 2000, 49(8): 1499-1502. doi: 10.7498/aps.49.1499
    [20] WEN SHUANG-CHUN, FAN DIAN-YUAN. THEORY OF SMALL-SCALE SELF-FOCUSING OF INTENSE LASER BEAMS IN MEDIA WITH GAIN AN D LOSS. Acta Physica Sinica, 2000, 49(7): 1282-1286. doi: 10.7498/aps.49.1282
Metrics
  • Abstract views:  4945
  • PDF Downloads:  289
  • Cited By: 0
Publishing process
  • Received Date:  05 June 2016
  • Accepted Date:  05 July 2016
  • Published Online:  05 November 2016

/

返回文章
返回