Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental investigations on the dynamical characteristics of pulse packages in a monolithically integrated amplified feedback laser

Chen Xi Zhao Ling-Juan Chen Jian-Jun Wang Hui-Ping Wu Zheng-Mao Lu Dan Xia Guang-Qiong

Citation:

Experimental investigations on the dynamical characteristics of pulse packages in a monolithically integrated amplified feedback laser

Chen Xi, Zhao Ling-Juan, Chen Jian-Jun, Wang Hui-Ping, Wu Zheng-Mao, Lu Dan, Xia Guang-Qiong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Under suitable external perturbation such as optical feedback, optical injection or optoelectronic feedback, semiconductor lasers can be driven to realize diverse dynamic outputs including period-one, period-two, multi-period, pulse packages(PPs), chaos, etc., which have potential applications in optical secure communications, microwave photonics, lidar, high speed random signal generation, etc.. For the PPs dynamics, most of previous relevant investigations are usually based on a system composed of discrete elements. In this work, we experimentally investigate the PP dynamical characteristics in a three-section monolithically integrated amplified feedback laser(AFL) composed of a distributed feedback(DFB) laser section, a phase(P) section, and an amplified feedback(A) section. For the AFL, the sections P and A act as a compounded feedback cavity in which the feedback phase and strength can be varied by adjusting the current in section P(IP) and the current in section A(IA), respectively. Via the power spectrum and self-correlation function curve of the time series output from the AFL, the influences of IP and IA on repeated frequency(PP) and regularity of PPs are analyzed in detail. The results indicate that, for the section DFB, whose current(IDFB) is biased at a relatively large level, the AFL can realize two-mode oscillation. After further choosing appropriate IP and IA, the AFL can behave as the dynamical state of PPs. Under IDFB=86.15 mA and IP=96.00 mA, through varying IA in a range of 6.50-10.50 mA, there exist two separated regions for IA to make the AFL operate at PPs. For the region with relatively small value of IA, both PP and the secondary maximum() of self-correlation curve characterizing the regularity of PPs monotonically decrease with the increase of IA. However, for the region with relatively large value of IA, with the increase of IA, PP first decreases and then fluctuates in a tiny range, but first increases, and further reaches an extreme value, and then decreases. Under IDFB=86.15 mA and IA=9.00 mA, the output characteristics of PPs are significantly affected by IP. With IP increasing from 90.5 mA to 96.5 mA, PP first decreases, and then increases after reaching a minimal value, meanwhile shows an approximately opposite variation trend. Finally, for IDFB=86.15 mA, the mapping of PPs in the parameter space of IP and IA is given and the evolution regularities of PPs are also presented.
      Corresponding author: Xia Guang-Qiong, gqxia@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 61275116, 61475127, 61575163).
    [1]

    Lin C F, Su Y S, Wu B R 2002 IEEE Photon. Technol. Lett. 14 3

    [2]

    Koyama F 2006 J. Lightwave Technol. 24 4502

    [3]

    Iga K 2000 IEEE J. Sel. Top. Quantum Electron. 6 1201

    [4]

    Hu H P, Yu Z L, Liu L F 2012 Acta Phys. Sin. 61 190504(in Chinese)[胡汉平, 于志良, 刘凌锋2012物理学报61 190504]

    [5]

    Kim B, Locquet A, Choi D, Citrin D S 2015 Phys. Rev. A 91 061802

    [6]

    Zhong D Z, Ji Y Q, Deng T, Zhou K L 2015 Acta Phys. Sin. 64 114203(in Chinese)[钟东洲, 计永强, 邓涛, 周开利2015物理学报64 114203]

    [7]

    Lenstra D, Verbeek B H, Den Boef A J 1985 IEEE J. Quantum Electron. 21 674

    [8]

    Kong L Q, Wang A B, Wang H H, Wang Y C 2008 Acta Phys. Sin. 57 2266(in Chinese)[孔令琴, 王安帮, 王海红, 王云才2008物理学报57 2266]

    [9]

    Hong Y H, Spencer P S, Shore K A 2004 Opt. Lett. 29 2151

    [10]

    Li N Q, Pan W, Xiang S Y, Luo B, Yan L S, Zou X H 2013 Appl. Opt. 52 1523

    [11]

    Liu H J, Feng J C 2009 Acta Phys. Sin. 58 1484(in Chinese)[刘慧杰, 冯久超2009物理学报58 1484]

    [12]

    Pan B W, Lu D, Sun Y, Yu L Q, Zhang L M, Zhao L J 2014 Opt. Lett. 39 6395

    [13]

    Jin S Z, Li Y Q, Xiao M 1996 Appl. Opt. 35 1436

    [14]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991

    [15]

    Tager A A, Elenkrig B B 1993 IEEE J. Quantum Electron. 29 2886

    [16]

    Heil T, Fischer I, Elsäßer W, Gavrielides A 2001 Phys. Rev. Lett. 87 243901

    [17]

    Tabaka A, Panajotov K, Veretennicoff I, Sciamanna M 2004 Phys. Rev. E 70 036221

    [18]

    Tabaka A, Peil M, Sciamanna M, Fischer I, Elsäßer W, Thienpont H, Veretennicoff I, Panajotov K 2006 Phys. Rev. A 73 013810

    [19]

    Peil M, Fischer I, Elsäßer W 2006 Phys. Rev. A 73 023805

    [20]

    Koch T L, Koren U 1991 IEEE J. Quantum Electron. 27 641

    [21]

    Charbonneau S, Koteles E S, Poole P J, He J J, Aers G C, Haysom J, Buchanan M, Feng Y, Delage A, Yang F, Davies M, Goldberg R D, Piva P G, Mitchell I V 1998 IEEE J. Sel. Top. Quantum Electron. 4 772

    [22]

    Yu L Q, Lu D, Pan B W, Zhao L J, Wu J G, Xia G Q, Wu Z M, Wang W 2014 J. Lightwave Technol. 32 3595

    [23]

    Monfils I, Cartledge J C 2009 J. Lightwave Technol. 27 619

    [24]

    Bauer S, Brox O, Kreissl J, Sahin G, Sartorius B 2002 Electron. Lett. 38 334

    [25]

    Yee D S, Leem Y A, Kim S T, Park K H, Kim B G 2007 IEEE J. Quantum Electron. 43 1095

    [26]

    Bauer S, Brox O, Kreissl J, Sartorius B, Radziunas M, Sieber J, Wnsche H J, Henneberger F 2004 Phys. Rev. E 69 016206

    [27]

    Loose A, Goswami B K, Wnsche H J, Henneberger F 2009 Phys. Rev. E 79 036211

    [28]

    Wu J G, Zhao L J, Wu Z M, Lu D, Tang X, Zhong Z Q, Xia G Q 2013 Opt. Express 21 23358

    [29]

    Toomey J P, Kane D M, Mcmahon C, Argyris A, Syvridis D 2015 Opt. Express 23 18754

  • [1]

    Lin C F, Su Y S, Wu B R 2002 IEEE Photon. Technol. Lett. 14 3

    [2]

    Koyama F 2006 J. Lightwave Technol. 24 4502

    [3]

    Iga K 2000 IEEE J. Sel. Top. Quantum Electron. 6 1201

    [4]

    Hu H P, Yu Z L, Liu L F 2012 Acta Phys. Sin. 61 190504(in Chinese)[胡汉平, 于志良, 刘凌锋2012物理学报61 190504]

    [5]

    Kim B, Locquet A, Choi D, Citrin D S 2015 Phys. Rev. A 91 061802

    [6]

    Zhong D Z, Ji Y Q, Deng T, Zhou K L 2015 Acta Phys. Sin. 64 114203(in Chinese)[钟东洲, 计永强, 邓涛, 周开利2015物理学报64 114203]

    [7]

    Lenstra D, Verbeek B H, Den Boef A J 1985 IEEE J. Quantum Electron. 21 674

    [8]

    Kong L Q, Wang A B, Wang H H, Wang Y C 2008 Acta Phys. Sin. 57 2266(in Chinese)[孔令琴, 王安帮, 王海红, 王云才2008物理学报57 2266]

    [9]

    Hong Y H, Spencer P S, Shore K A 2004 Opt. Lett. 29 2151

    [10]

    Li N Q, Pan W, Xiang S Y, Luo B, Yan L S, Zou X H 2013 Appl. Opt. 52 1523

    [11]

    Liu H J, Feng J C 2009 Acta Phys. Sin. 58 1484(in Chinese)[刘慧杰, 冯久超2009物理学报58 1484]

    [12]

    Pan B W, Lu D, Sun Y, Yu L Q, Zhang L M, Zhao L J 2014 Opt. Lett. 39 6395

    [13]

    Jin S Z, Li Y Q, Xiao M 1996 Appl. Opt. 35 1436

    [14]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991

    [15]

    Tager A A, Elenkrig B B 1993 IEEE J. Quantum Electron. 29 2886

    [16]

    Heil T, Fischer I, Elsäßer W, Gavrielides A 2001 Phys. Rev. Lett. 87 243901

    [17]

    Tabaka A, Panajotov K, Veretennicoff I, Sciamanna M 2004 Phys. Rev. E 70 036221

    [18]

    Tabaka A, Peil M, Sciamanna M, Fischer I, Elsäßer W, Thienpont H, Veretennicoff I, Panajotov K 2006 Phys. Rev. A 73 013810

    [19]

    Peil M, Fischer I, Elsäßer W 2006 Phys. Rev. A 73 023805

    [20]

    Koch T L, Koren U 1991 IEEE J. Quantum Electron. 27 641

    [21]

    Charbonneau S, Koteles E S, Poole P J, He J J, Aers G C, Haysom J, Buchanan M, Feng Y, Delage A, Yang F, Davies M, Goldberg R D, Piva P G, Mitchell I V 1998 IEEE J. Sel. Top. Quantum Electron. 4 772

    [22]

    Yu L Q, Lu D, Pan B W, Zhao L J, Wu J G, Xia G Q, Wu Z M, Wang W 2014 J. Lightwave Technol. 32 3595

    [23]

    Monfils I, Cartledge J C 2009 J. Lightwave Technol. 27 619

    [24]

    Bauer S, Brox O, Kreissl J, Sahin G, Sartorius B 2002 Electron. Lett. 38 334

    [25]

    Yee D S, Leem Y A, Kim S T, Park K H, Kim B G 2007 IEEE J. Quantum Electron. 43 1095

    [26]

    Bauer S, Brox O, Kreissl J, Sartorius B, Radziunas M, Sieber J, Wnsche H J, Henneberger F 2004 Phys. Rev. E 69 016206

    [27]

    Loose A, Goswami B K, Wnsche H J, Henneberger F 2009 Phys. Rev. E 79 036211

    [28]

    Wu J G, Zhao L J, Wu Z M, Lu D, Tang X, Zhong Z Q, Xia G Q 2013 Opt. Express 21 23358

    [29]

    Toomey J P, Kane D M, Mcmahon C, Argyris A, Syvridis D 2015 Opt. Express 23 18754

  • [1] Yang Sheng-Hui, Dong Ming-Yi, Qu Chao-Yue, Tian Xing-Cheng, Dong Jing, Wu Ye, Ma Xiao-Yan, Zhang Hong-Yu, Jiang Xiao-Shan, Ouyang Qun, Li Lan-Kun, Zheng Guo-Heng. Test study of detector modules based on monolithic active pixel sensor. Acta Physica Sinica, 2021, 70(17): 170702. doi: 10.7498/aps.70.20210464
    [2] Yuan Ying-Kuo, Guo Wei-Ling, Du Zai-Fa, Qian Feng-Song, Liu Ming, Wang Le, Xu Chen, Yan Qun, Sun Jie. Applications of graphene transistor optimized fabrication process in monolithic integrated driving gallium nitride micro-light-emitting diode. Acta Physica Sinica, 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [3] Wang Nan, Ruan Shuang-Chen. Analytical algorithem of stretcher dispersion in chirp pulse amplification laser system. Acta Physica Sinica, 2020, 69(2): 024201. doi: 10.7498/aps.69.20191587
    [4] Ye Han, Han Qin, Lü Qian-Qian, Pan Pan, An Jun-Ming, Wang Yu-Bing, Liu Rong-Rui, Hou Li-Li. Butt-joint design in a uni-traveling carrier photodiode array monolithic with an arrayed waveguide grating by the selective area growth technique. Acta Physica Sinica, 2017, 66(15): 158502. doi: 10.7498/aps.66.158502
    [5] Han Xu, Feng Guo-Ying, Wu Chuan-Long, Jiang Dong-Sheng, Zhou Shou-Huan. Investigation of self-pulsing and self-mode-locking in ytterbium-doped fiber laser. Acta Physica Sinica, 2012, 61(11): 114204. doi: 10.7498/aps.61.114204
    [6] Cao Shi-Ying, Meng Fei, Fang Zhan-Jun, Li Tian-Chu. Experimental study on detection of the high signal-to-noise ratio of the carrier-envelope offset frequency in an Er-doped fiber femtosecond laser. Acta Physica Sinica, 2012, 61(6): 064208. doi: 10.7498/aps.61.064208
    [7] Li Tian-Chu, Cao Shi-Ying, Meng Fei, Cai Yue, Fang Zhan-Jun, Wang Gui-Zhong, Zhang Zhi-Gang. Detection of carrier-envelope offset frequency in an Er-doped fiber femtosecond laser. Acta Physica Sinica, 2011, 60(9): 094208. doi: 10.7498/aps.60.094208
    [8] Song Li-Wei, Li Chuang, Wang Ding, Xu Can-Hua, Leng Yu-Xin, Li Ru-Xin. Carrier-envelope stabilized few-cycle infrared laser system. Acta Physica Sinica, 2011, 60(5): 054206. doi: 10.7498/aps.60.054206
    [9] Ren Guang-Jun, Wei Zhen, Yao Jian-Quan. Q-switched pulse polarization-maintaining Nd3+-doped fiber laser. Acta Physica Sinica, 2009, 58(2): 941-945. doi: 10.7498/aps.58.941
    [10] Wang Jian-Liang, Zhang Chun-Mei, Song Li-Wei, Leng Yu-Xin. Measurement of the carrier-envelope phase stability of infrared femtosecond laser pulses by two-path interferometer. Acta Physica Sinica, 2009, 58(6): 3966-3970. doi: 10.7498/aps.58.3966
    [11] Deng Yu-Qiang, Cao Shi-Ying, Yu Jing, Xu Tao, Wang Qing-Yue, Zhang Zhi-Gang. Carrier-envelope phase extraction with wavelet-transform technique of amplified ultrashort optical pulses. Acta Physica Sinica, 2008, 57(11): 7017-7021. doi: 10.7498/aps.57.7017
    [12] Zhu Jiang-Feng, Du Qiang, Wang Xiang-Lin, Teng Hao, Han Hai-Nian, Wei Zhi-Yi, Hou Xun. Carrier-envelope phase measurement and stabilization of amplified Ti:sapphire femtosecond laser pulses by spectral interferometry. Acta Physica Sinica, 2008, 57(12): 7753-7757. doi: 10.7498/aps.57.7753
    [13] Han Hai-Nian, Zhang Wei, Tong Juan-Juan, Wang Yan-Hui, Wang Peng, Wei Zhi-Yi, Li De-Hua, Shen Nai-Chen, Nie Yu-Xin, Dong Tai-Qian. Control of carrier-envelope phase offset in femtosecond laser with PLL and TV-Rb clock. Acta Physica Sinica, 2007, 56(1): 291-295. doi: 10.7498/aps.56.291
    [14] Han Hai_Nian, Zhao Yan_Ying, Zhang Wei, Zhu Jiang_Feng, Wang Peng, Wei Zhi_Yi, Li Shi_Qun. Measurement of carrier-envelope phase of few cycles Ti:sapphire laser by difference frequency technique. Acta Physica Sinica, 2007, 56(5): 2756-2759. doi: 10.7498/aps.56.2756
    [15] Zhao Qian, Pan Jiao-Qing, Zhang Jing, Li Bao-Xia, Zhou Fan, Wang Bao-Jun, Wang Lu-Feng, Bian Jing, Zhao Ling-Juan, Wang Wei. Electroabsorption-modulated laser light-source module using selective area growth for 10 Gb/s transmission. Acta Physica Sinica, 2006, 55(3): 1259-1263. doi: 10.7498/aps.55.1259
    [16] Zhao Qian, Pan Jiao-Qing, Zhang Jing, Zhou Guang-Tao, Wu Jian, Zhou Fan, Wang Bao-Jun, Wang Lu-Feng, Wang Wei. 10 GHz optical short pulse generation using tandem electroabsorption modulators monolithically integrated with distributed feedback laser by ultra-low-pressure selective area growth. Acta Physica Sinica, 2006, 55(1): 261-266. doi: 10.7498/aps.55.261
    [17] Han Hai-Nian, Wei Zhi-Yi, Zhang Jun, Nie Yu-Xin. Measurements of carrier-envelope-offset in the femtosecond Ti:sapphire laser. Acta Physica Sinica, 2005, 54(1): 155-158. doi: 10.7498/aps.54.155
    [18] Cheng Zhao-Gu, Li Xian-Qin, Chai Xiong-Liang, Gao Hai-Jun, Liu Cui-Qing. High power pulse CO2 laser with preionization burst-mode switch technology. Acta Physica Sinica, 2004, 53(5): 1362-1366. doi: 10.7498/aps.53.1362
    [19] SUN JUN-QIANG, HUANG DE-XIU, LI ZAI-GUANG. SELF-PULSING IN THE Er3+-DOPED FIBER LASER. Acta Physica Sinica, 1996, 45(6): 960-965. doi: 10.7498/aps.45.960
    [20] FANG HONG-LIE, FU SHU-FEN, G. T. MOORE. STATIONARY PULSE SOLUTIONS FOR A FREE ELECTRON LASER. Acta Physica Sinica, 1984, 33(7): 935-942. doi: 10.7498/aps.33.935
Metrics
  • Abstract views:  4790
  • PDF Downloads:  164
  • Cited By: 0
Publishing process
  • Received Date:  20 June 2016
  • Accepted Date:  16 August 2016
  • Published Online:  05 November 2016

/

返回文章
返回