Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Plasmon induced transparency in the trimer of gold nanorods

Ma Ping-Ping Zhang Jie Liu Huan-Huan Zhang Jing Xu Yong-Gang Wang Jiang Zhang Meng-Qiao Li Yong-Fang

Citation:

Plasmon induced transparency in the trimer of gold nanorods

Ma Ping-Ping, Zhang Jie, Liu Huan-Huan, Zhang Jing, Xu Yong-Gang, Wang Jiang, Zhang Meng-Qiao, Li Yong-Fang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The localized surface plasmon resonance can be generated on the surface of the nano-metamaterial by the interaction between the nano-metamaterial and the light field, and also many plasmon oscillation modes can occur in the process of the hybridization between many infinitesimal composite structures, which is widely used for adjusting the resonant frequency in the optical frequency domain. Recently, analogue of the electromagnetically induced transparency(EIT) has been realized in the low-loss nano-metamaterial, and is well known as the plasmon induced transparency(PIT). In atomic physics, EIT is an effect which originates from the destructive quantum interference of two different excitation pathways. A sharp dip of nearly ideal transmission can arise within the broad absorption profile, which indicates that the EIT can be used in the fields of slow slight, delay lines and low-loss metamaterial. In this paper, a trimer consisting of a vertical nanorod(serving as a dipole antenna) and two parallel nanorods(used as a quadrupole antenna) is employed to investigate the process mechanism of the PIT in detail. It is found that the vertical nanorod with a large broad linewidth can be strongly coupled with the light. However, the parallel nanorods are weakly coupled with the light and their narrow linewidths are almost from the intrinsic metal loss(Drude damping) that is much smaller than the radiative damping of the dipole antenna. These two antennas can be strongly coupled due to their close similarities. Moreover, the absorption spectra of the trimer obtained by using three-dimensional finite element method vary with its coupling distance and geometry size, and the dipole bright mode corresponding to the dipole antenna splits under the action of the dark mode for the quadrupole antenna. Thus, a fresh physical interpretation is given:the PIT is mainly due to the coherent superposition after the splitting of the dipole oscillation mode in the vertical nanorod, rather than the parallel nanorods. Taking into consideration the phase correlation associated with coupling process of two oscillators, we introduce a modified Lorentzian oscillator model to investigate the effects of the coupling phase factor on the modulation of the absorption spectra and the coherent superposition between the splitting bright modes on the PIT. These findings will provide theoretical references for the applications of artificial atom, optical switching and slow light devices designed in the nanosize range.
      Corresponding author: Li Yong-Fang, yfli@snnu.edu.cn
    [1]

    Brongersma M L, Kik P G 2007 Surface Plasmon Nanophotonics (Berlin:Springer)

    [2]

    Pacifici D, Lezec H J, Atwater H A 2007 Nat. Photon. 1 402

    [3]

    Linden S, Enkrich C, Wegener M, Zhou J, Koschny T, Soukoulis C M 2004 Science 306 1351

    [4]

    Zhang S, Fan W, Panoiu N C, Malloy K J, Osgood R M, Brueck S R J 2005 Phys. Rev. Lett. 95 137404

    [5]

    Ha T, Enderle T, Ogletree D F, Chemla D S, Selvin P R, Weiss S 1996 Proc. Natl. Acad. Sci. U S A 93 6264

    [6]

    Nie S, Emory S R 1997 Science 275 1102

    [7]

    Butet J, Martin O J F 2014 Opt. Express 22 29693

    [8]

    Butet J, Dutta-Gupta S, Martin O J F 2014 Phys. Rev. B 89 245449

    [9]

    Thyagarajan K, Butet J, Martin O J F 2013 Nano Lett. 13 1847

    [10]

    Li J, Liu T, Zheng H, Dong J, He E, Gao W, Wu Y 2014 Plasmonics 9 1439

    [11]

    Hao F, Sonnefraud Y, Dorpe P V, Maier S A, Halas N J, Nordlander P 2008 Nano Lett. 8 3983

    [12]

    Jain P K, Huang X, El-Sayed I H, El-Sayed M A 2007 Plasmonics 2 107

    [13]

    Dong Z G, Liu H, Cao J X, Li T, Wang S M, Zhu S N, Zhang X 2010 Appl. Phys. Lett. 97 114101

    [14]

    Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Giessen H 2009 Opt. Express 17 15372

    [15]

    Artar A, Yanik A A, Altug H 2011 Nano Lett. 11 1685

    [16]

    Sadeghi S M, Deng L, Li X, Huang W P 2009 Nanotechnology 20 365401

    [17]

    Wang W, Li Y, Xu P, Chen Z, Chen J, Qian J, Xu J 2014 J. Opt. 16 125013

    [18]

    Chen J, Wang P, Chen C, Lu Y, Ming H, Zhan Q 2011 Opt. Express 19 5970

    [19]

    Harris S E 2008 Phys. Today 50 36

    [20]

    Ham B S, Shahriar M S, Hemmer P R 1997 Opt. Lett. 22 1138

    [21]

    Phillips M, Wang H 2002 Phys. Rev. Lett. 89 186401

    [22]

    Maleki L, Matsko A B, Savchenkov A A, Ilchenko V S 2004 Opt. Lett. 29 626

    [23]

    Ham B S, Hahn J 2009 Appl. Phys. Lett. 94 101110

    [24]

    Gan Q, Fu Z, Ding Y J, Bartoli F J 2008 Phys. Rev. Lett 100 256803

    [25]

    Wang G, Lu H, Liu X 2012 Appl. Phys. Lett. 101 013111

    [26]

    Wei H, Wang Z, Tian X, Käll M, Xu H 2011 Nat. Commun. 2 387

    [27]

    Totsuka K, Kobayashi N, Tomita M 2007 Phys. Rev. Lett. 98 213904

    [28]

    Xu H, Ham B S 2008 Phys. Rev. Lett. 101 047401

    [29]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [30]

    Liu T, Li J, Gao F, Han Q, Liu S 2013 Europhys. Lett. 104 47009

    [31]

    Mhlschlegel P, Eisler H J, Martin O J F, Hecht, Pohl D W 2005 Science 308 1607

    [32]

    Xu H, Lu Y, Lee Y, Ham B S 2010 Opt. Express 18 17736

  • [1]

    Brongersma M L, Kik P G 2007 Surface Plasmon Nanophotonics (Berlin:Springer)

    [2]

    Pacifici D, Lezec H J, Atwater H A 2007 Nat. Photon. 1 402

    [3]

    Linden S, Enkrich C, Wegener M, Zhou J, Koschny T, Soukoulis C M 2004 Science 306 1351

    [4]

    Zhang S, Fan W, Panoiu N C, Malloy K J, Osgood R M, Brueck S R J 2005 Phys. Rev. Lett. 95 137404

    [5]

    Ha T, Enderle T, Ogletree D F, Chemla D S, Selvin P R, Weiss S 1996 Proc. Natl. Acad. Sci. U S A 93 6264

    [6]

    Nie S, Emory S R 1997 Science 275 1102

    [7]

    Butet J, Martin O J F 2014 Opt. Express 22 29693

    [8]

    Butet J, Dutta-Gupta S, Martin O J F 2014 Phys. Rev. B 89 245449

    [9]

    Thyagarajan K, Butet J, Martin O J F 2013 Nano Lett. 13 1847

    [10]

    Li J, Liu T, Zheng H, Dong J, He E, Gao W, Wu Y 2014 Plasmonics 9 1439

    [11]

    Hao F, Sonnefraud Y, Dorpe P V, Maier S A, Halas N J, Nordlander P 2008 Nano Lett. 8 3983

    [12]

    Jain P K, Huang X, El-Sayed I H, El-Sayed M A 2007 Plasmonics 2 107

    [13]

    Dong Z G, Liu H, Cao J X, Li T, Wang S M, Zhu S N, Zhang X 2010 Appl. Phys. Lett. 97 114101

    [14]

    Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Giessen H 2009 Opt. Express 17 15372

    [15]

    Artar A, Yanik A A, Altug H 2011 Nano Lett. 11 1685

    [16]

    Sadeghi S M, Deng L, Li X, Huang W P 2009 Nanotechnology 20 365401

    [17]

    Wang W, Li Y, Xu P, Chen Z, Chen J, Qian J, Xu J 2014 J. Opt. 16 125013

    [18]

    Chen J, Wang P, Chen C, Lu Y, Ming H, Zhan Q 2011 Opt. Express 19 5970

    [19]

    Harris S E 2008 Phys. Today 50 36

    [20]

    Ham B S, Shahriar M S, Hemmer P R 1997 Opt. Lett. 22 1138

    [21]

    Phillips M, Wang H 2002 Phys. Rev. Lett. 89 186401

    [22]

    Maleki L, Matsko A B, Savchenkov A A, Ilchenko V S 2004 Opt. Lett. 29 626

    [23]

    Ham B S, Hahn J 2009 Appl. Phys. Lett. 94 101110

    [24]

    Gan Q, Fu Z, Ding Y J, Bartoli F J 2008 Phys. Rev. Lett 100 256803

    [25]

    Wang G, Lu H, Liu X 2012 Appl. Phys. Lett. 101 013111

    [26]

    Wei H, Wang Z, Tian X, Käll M, Xu H 2011 Nat. Commun. 2 387

    [27]

    Totsuka K, Kobayashi N, Tomita M 2007 Phys. Rev. Lett. 98 213904

    [28]

    Xu H, Ham B S 2008 Phys. Rev. Lett. 101 047401

    [29]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [30]

    Liu T, Li J, Gao F, Han Q, Liu S 2013 Europhys. Lett. 104 47009

    [31]

    Mhlschlegel P, Eisler H J, Martin O J F, Hecht, Pohl D W 2005 Science 308 1607

    [32]

    Xu H, Lu Y, Lee Y, Ham B S 2010 Opt. Express 18 17736

  • [1] Wang Yue, Wang Lun, Sun Bai-Xun, Lang Peng, Xu Yang, Zhao Zhen-Long, Song Xiao-Wei, Ji Bo-Yu, Lin Jing-Quan. Near-field control of gold nanostructure under joint action of surface plasmon polariton and incident light. Acta Physica Sinica, 2023, 72(17): 175202. doi: 10.7498/aps.72.20230514
    [2] Hu Bao-Jing, Huang Ming, Li Peng, Yang Jing-Jing. Plasmon-induced transparency based on black phosphorus nanorods hybrid model. Acta Physica Sinica, 2021, 70(4): 044201. doi: 10.7498/aps.70.20201331
    [3] Chu Pei-Xin, Zhang Yu-Bin, Chen Jun-Xue. Surface plasmon induced transparency in coupled microcavities assisted by slits. Acta Physica Sinica, 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [4] Hu Bao-Jing, Huang Ming, Li Peng, Yang Jing-Jing. Multiband plasmon-induced transparency based on nanometals-graphene hybrid model. Acta Physica Sinica, 2020, 69(17): 174201. doi: 10.7498/aps.69.20200200
    [5] Hu Bao-Jing, Huang Ming, Li Peng, Yang Cheng-Fu. Multiband plasmon-induced transparency based on silver nanorods and nanodisk hybrid model. Acta Physica Sinica, 2020, 69(13): 134202. doi: 10.7498/aps.69.20200093
    [6] Li Pan. Research progress of plasmonic nanofocusing. Acta Physica Sinica, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [7] Li Ai-Yun, Zhang Xing-Fang, Liu Feng-Shou, Yan Xin, Liang Lan-Ju. Fano resonances in symmetric gold nanorod trimers. Acta Physica Sinica, 2019, 68(19): 197801. doi: 10.7498/aps.68.20190978
    [8] Wang Wen-Hui,  Zhang Nao. Energy loss of surface plasmon polaritons on Ag nanowire waveguide. Acta Physica Sinica, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [9] Zhao Jun-Long, Zhang Yi-Dan, Yang Ming. Influence of noice on tripartite quantum probe state. Acta Physica Sinica, 2018, 67(14): 140302. doi: 10.7498/aps.67.20180040
    [10] Wang Wen-Jie, Wang Jia-Fu, Yan Ming-Bao, Lu Lei, Ma Hua, Qu Shao-Bo, Chen Hong-Ya, Xu Cui-Lian. Ultra-thin multiband metamaterial absorber based on multi-order plasmon resonances. Acta Physica Sinica, 2014, 63(17): 174101. doi: 10.7498/aps.63.174101
    [11] Yin Hai-Feng, Zhang Hong, Yue Li. Plasmon excitation in C60 fullerene dimers. Acta Physica Sinica, 2014, 63(12): 127303. doi: 10.7498/aps.63.127303
    [12] Zhang Xing-Fang, Yan Xin. Tunable properties of localized surface plasmon resonance wavelength of gold nanoshell. Acta Physica Sinica, 2013, 62(3): 037805. doi: 10.7498/aps.62.037805
    [13] Zhu Hua, Yan Zhen-Dong, Zhan Peng, Wang Zhen-Lin. Enhanced third harmonic generation by localized surface plasmon excitation. Acta Physica Sinica, 2013, 62(17): 178104. doi: 10.7498/aps.62.178104
    [14] Cong Chao, Wu Da-Jian, Liu Xiao-Jun, Li Bo. Study on the localized surface plasmon resonance properties of bimetallic gold and silver three-layered nanotubes. Acta Physica Sinica, 2012, 61(3): 037301. doi: 10.7498/aps.61.037301
    [15] Zou Wei-Bo, Zhou Jun, Jin Li, Zhang Hao-Peng. Properties of localized surface plasmon resonance of gold nanoshell pairs. Acta Physica Sinica, 2012, 61(9): 097805. doi: 10.7498/aps.61.097805
    [16] Cong Chao, Wu Da-Jian, Liu Xiao-Jun. Localized surface plasmon resonance propertiesof elliptical gold nanotubes. Acta Physica Sinica, 2011, 60(4): 046102. doi: 10.7498/aps.60.046102
    [17] Li Qin, Guo Hong. The propagation properties of broadband pulse. Acta Physica Sinica, 2011, 60(5): 054204. doi: 10.7498/aps.60.054204
    [18] Zuo Yan-Lei, Wei Xiao-Feng, Zhu Qi-Hua, Liu Hong-Jie, Wang Xiao, Huang Zheng, Guo Yi, Ying Chun-Tong. Theory of array-grating compressor based on in-pair compensation of errors. Acta Physica Sinica, 2007, 56(9): 5227-5232. doi: 10.7498/aps.56.5227
    [19] WANG XIAO, CAI JIAN-HUA. PLASMON THEORY OF THREE-DIMENSIONAL TIGHT-BINDING ELECTRON GAS. Acta Physica Sinica, 1993, 42(7): 1149-1156. doi: 10.7498/aps.42.1149
    [20] Wang Xiao;Cai Jiang-hua. PLASMON THEORY OF THREE-DIMENSIONAL TIGHT-BINDING ELECTRON GAS. Acta Physica Sinica, 1991, 40(7): 1149-1156. doi: 10.7498/aps.40.1149
Metrics
  • Abstract views:  4497
  • PDF Downloads:  287
  • Cited By: 0
Publishing process
  • Received Date:  30 January 2016
  • Accepted Date:  05 August 2016
  • Published Online:  05 November 2016

/

返回文章
返回