Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Contrastive analysis of neuron model

Xu Ling-Feng Li Chuan-Dong Chen Ling

Citation:

Contrastive analysis of neuron model

Xu Ling-Feng, Li Chuan-Dong, Chen Ling
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In recent years,the modeling and application of biological neurons have gained more and more attention.By now, the research on neuron models has become one of the most important branches of neuroscience.Neuron models can be used in various areas,such as biomimetic applications,memory design,logical computing,and signal processing. Furthermore,it is significant to study the dynamic characteristics of neural system by using neuron models.In this paper,the historical development of neuron models is reviewed.The neuron models have experienced three development stages.In the pioneering stage,a group of scientists laid the experimental and theoretical foundation for later research. Then,the whole study started to blossom after the publication of Hodgkin-Huxley model.In the 1970s and 1980s,various models were proposed.One of the research focuses was the simulation of neural repetitive spiking.Since the 1990s, researchers have paid more attention to setting up models that are both physiologically meaningful and computationally effective.The model put forward by Izhikevich E M has been proved to solve the problem successfully.Recently,IBM presented a versatile spiking neuron model based on 1272 ASIC gates.The model,both theoretically understandable and physically implementable,has been used as a basic building block in IBM's neuro-chip TrueNorth.In the paper, seventeen neuron models worth studying are listed.To give a more explicit explanation,these models are classified as two groups,namely conductance-dependent and conductance-independent models.The former group's goal is to model the electrophysiology of neuronal membrane,while the latter group is only to seek for capturing the input-output behavior of a neuron by using simple mathematical abstractions.The complexity and features of each model are illustrated in a chart,while the prominent repetitive spiking curves of each model are also exhibited.Five of the models are further detailed,which are the Hodgkin-Huxley model,the Integrate-and-fire model,the Fitzhugh-Nagumo model,the Izhikevich model,and the most recent model used by IBM in its neuro-chip TrueNorth.Finally,three questions are put forward at the end of the paper,which are the most important problems that today's researchers must consider when setting up new neuron models.In conclusion,the feasibility of physical implementation remains to be a challenge to all researchers. Through the aforementioned work,the authors aim to provide a reference for the study that follows,helping researchers to compare those models in order to choose the properest one.
      Corresponding author: Li Chuan-Dong, licdswu@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61374078, 61503307), the Chongqing Research Program of Basic Research and Frontier Technology, China (Grant Nos. cstc2015jcyjBX0052, cstc2016jcyjA0261), the Fundamental Research Funds for the Central Universities, China (Grant No. XDJK2015C079), and the China Postdoctoral Science Foundation (Grant No. 2016M590854).
    [1]

    Durstewitz D, Seamans J K, Sejnowski T J 2000 Nat. Neurosci. 3 1184

    [2]

    Cassidy A S, Merolla P, Arthur J V, Esser S K, Jackson B, Alvarez-Icaza R, Datta P, Sawada Jun, Wong T M, Feldman V, Amir A, Rubin D B, Akopyan F, McQuinn E, Risk W P, Modha D S 2013 The 2013 International Joint Conference on Neural Networks (IJCNN) Dallas, USA, August 4-9, 2013 p1

    [3]

    Smith G D, Cox C L, Sherman S M, Rinzel J 2000 J. Neurophysiol. 83 588

    [4]

    Fourcaud-Trocmé D, Hansel D, van Vreeswijk C, Brunel N 2003 J. Neurosci. 23 11628

    [5]

    Lapicque L 1907 J. Physiol. Pathol. Gen. 9 620

    [6]

    Abbott L F 1999 Brain Res. Bull. 50 303

    [7]

    Brunel N, van Rossum M C W 2007 Biol. Cybern. 97 337

    [8]

    McCulloch W S, Pitts W 1943 Bull. Math. Biol. 5 115

    [9]

    Bernstein J 1902 Pflgers Arch. 92 521

    [10]

    Hodgkin A L 1939 J. Physiol. 94 560

    [11]

    Hodgkin A L, Katz B 1949 J. Physiol. 108 37

    [12]

    Bonhoeffer K F 1948 J. Gen. Physiol. 32 69

    [13]

    Hodgkin A L 1948 J. Physiol. 107 165

    [14]

    Hebb D O 1949 The Organization of Behavior:A Neuropsychological Theory (1st Ed.) (London:Chapman & Hall) pp17-78

    [15]

    Hodgkin A L, Huxley A F, Katz B 1952 J. Physiol. 116 424

    [16]

    Eccles J C, Eccles R M, Lundberg A 1957 J. Physiol. 137 22

    [17]

    Rosenblatt F 1958 Psychol. Rev. 65 386

    [18]

    Fitzhugh R 1960 J. Gen. Physiol. 43 867

    [19]

    Nagumo J, Arimoto S, Yoshizawa S 1962 Proc. IRE 50 2061

    [20]

    Fuortes M G F, Mantegazzini F 1962 J. Gen. Physiol. 45 1163

    [21]

    Stein R B 1965 Biophys. J. 5 173

    [22]

    Geisler C D, Goldberg J M 1966 Biophys. J. 6 53

    [23]

    Rall W 1967 J. Neurophysiol. 30 1138

    [24]

    Stein R B 1967 Proc. R. Soc. Lond. B:Biol. Sci. 167 64

    [25]

    Knight B W 1972 J. Gen. Physiol. 59 734

    [26]

    Kernell D, Sj·holm H 1973 Acta Physiol. Scand. 87 40

    [27]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 117 500

    [28]

    Shapiro B I, Lenherr F K 1972 Biophys. J. 12 1145

    [29]

    Krinskii V I, Iu M K 1973 Biofizika 18 506

    [30]

    Krinskii V I, Iu M K 1973 Biofizika 18 878

    [31]

    Plant R E, Kim M 1976 Biophys. J. 16 227

    [32]

    Plant R E 1976 Computer Programs Biomed. 6 85

    [33]

    Rinzel J 1978 Studies in Mathematical Biology (1st Ed.) (Washington:Mathematical association of America) pp1-66

    [34]

    Fitzhugh R 1961 Biophys. J. 1 445

    [35]

    Connor J A, Stevens C F 1971 J. Physiol. 213 31

    [36]

    Connor J A, Walter D, Mckown R 1977 Biophys. J. 18 81

    [37]

    Morris C, Lecar H 1981 Biophys. J. 35 193

    [38]

    Rinzel J, Troy W C 1982 J. Chem. Phys. 76 1775

    [39]

    Chay T R 1985 Physica D 16 233

    [40]

    Chay T R, Keizer J 1983 Biophys. J. 42 181

    [41]

    Ermentrout G B, Kopell N 1986 SIAM J. Appl. Math. 46 233

    [42]

    Hindmarsh J L, Rose R M 1982 Nature 296 162

    [43]

    Hindmarsh J L, Rose R M 1984 Proc. R. Soc. Lond. B:Biol. Sci. 221 87

    [44]

    Rose R M, Hindmarsh J L 1985 Proc. R. Soc. Lond. B:Biol. Sci. 225 161

    [45]

    Rose R M, Hindmarsh J L 1989 Proc. R. Soc. Lond. B:Biol. Sci. 237 267

    [46]

    Rose R M, Hindmarsh J L 1989 Proc. R. Soc. Lond. B:Biol. Sci. 237 289

    [47]

    Rose R M, Hindmarsh J L 1989 Proc. R. Soc. Lond. B:Biol. Sci. 237 313

    [48]

    Chay T R, Rinzel J 1985 Biophys. J. 47 357

    [49]

    Connor J A, Stevens C F 1971 J. Physiol. 213 1

    [50]

    Connor J A, Stevens C F 1971 J. Physiol. 213 21

    [51]

    Connor J 1975 J. Neurophysiol. 38 922

    [52]

    Jack J J B, Noble D, Tsien R W 1975 Electric Current Flow in Excitable Cells (1st Ed.) (Oxford:Clarendon Press) pp132-224

    [53]

    Connors B W, Gutnick M J, Prince D A 1982 J. Neurophysiol. 48 1302

    [54]

    Plant R E 1978 Biophys. J. 21 217

    [55]

    Rinzel J 1985 Ordinary and Partial Differential Equations (1st Ed.) (Berlin:Springer-Verlag) pp304-316

    [56]

    Rinzel J 1985 Fed. Proc. 44 2944

    [57]

    Mircea S, Jones E G, Llinás R R 1990 Thalamic Oscillations and Signaling (1st Ed.) (New York:John Wiley) pp1-43

    [58]

    Rinzel J 1987 Mathematical Topics in Population Biology, Morphogenesis and Neurosciences (1st Ed.) (Berlin:Springer) pp267-281

    [59]

    Connors B W, Gutnick M J 1990 Trends Neurosci. 13 99

    [60]

    Rall W 1989 Methods in Neuronal Modeling:from Ions to Networks (2nd Ed.) (Cambridge:MIT Press) pp9-62

    [61]

    Ermentrout B 1996 Neural Comput. 8 979

    [62]

    Hoppensteadt F C, Izhikevich E M 1997 Weakly Connected Neural Networks (1st Ed.) (New York:Springer-Verlag) pp25-101

    [63]

    Rinzel J, Ermentrout G B 1989 Methods in Neuronal Modeling (1st Ed.) (Cambridge:MIT Press) pp135-169

    [64]

    Roth A, Häusser M 2001 J. Physiol. 535 445

    [65]

    Chay T R 1991 Biopolymers 31 1483

    [66]

    Stevens C F, Zador A M 1998 Proceedings of 5th Joint Symposium on Neural Computation San Diego, USA, May 16, 1998 p172

    [67]

    Wilson H R 1999 J. Theor. Biol. 200 375

    [68]

    Izhikevich E M 1999 IEEE Trans. Neural Netw. 10 499

    [69]

    Izhikevich E M 2001 SIAM Rev. 43 315

    [70]

    Izhikevich E M, Hoppensteadt F 2004 Int. J. Bifurcat. Chaos 14 3847

    [71]

    Abbott L F, van Vreeswijk C 1993 Phys. Rev. E 48 1483

    [72]

    Destexhe A, Rudolph M, Pare D 2003 Nat. Rev. Neurosci. 4 739

    [73]

    Avoli M, Hwa G G, Lacaille J C, Olivier A, Villemure J G 1994 Exp. Brain Res. 98 135

    [74]

    Hutcheon B, Miura R M, Puil E 1996 J. Neurophysiol. 76 683

    [75]

    Mainen Z F, Sejnowski T J 1996 Nature 382 363

    [76]

    Bower J M, Beeman D 1998 The Book of Genesis (1st Ed.) (New York:Springer) pp51-130

    [77]

    Destexhe A, Mainen Z F, Sejnowski T J 1994 J. Comput. Neurosci. 1 195

    [78]

    Hutcheon B, Yarom Y 2000 Trends Neurosci. 23 216

    [79]

    Latham P E, Richmond B J, Nelson P G, Nirenberg S 2000 J. Neurophysiol. 83 808

    [80]

    Pike F G, Goddard R S, Suckling J M, Ganter P, Kasthuri N, Paulsen O 2000 J. Physiol. 529 205

    [81]

    Hansel D, Mato G 2001 Phys. Rev. Lett. 86 4175

    [82]

    Izhikevich E M 2004 IEEE Trans. Neural Netw. 15 1063

    [83]

    Segev I, Fleshman J W, Burke R E 1989 Methods in Neuronal Modeling (1st Ed.) (Cambridge:MIT Press) pp63-96

    [84]

    Pinsky P F, Rinzel J 1994 J. Comput. Neurosci. 1 39

    [85]

    Wang X J, Buzsáki G 1996 J. Neurosci. 16 6402

    [86]

    Hutcheon B, Miura R M, Puil E 1996 J. Neurophysiol. 76 698

    [87]

    Manor Y, Rinzel J, Segev I, Yarom Y 1997 J. Neurophysiol. 77 2736

    [88]

    Koch C, Segev I 1998 Methods in Neuronal Modeling:From Ions to Networks (2nd Ed.) (Cambridge:MIT Press) pp93-136

    [89]

    Feng J, Brown D 2000 Bull. Math. Biol. 62 467

    [90]

    Feng J 2001 Neural Netw. 14 955

    [91]

    Kistler W M, Gerstner W, van Hemmen J L 1997 Neural Comput. 9 1015

    [92]

    Izhikevich E M 2000 Int. J. Bifurcat. Chaos 10 1171

    [93]

    Izhikevich E M 2001 Neural Netw. 14 883

    [94]

    Gerstner W, Kistler W M 2002 Spiking Neuron Models:Single Neurons, Populations, Plasticity (1st Ed.) (Cambridge:Cambridge University Press) pp31-146

    [95]

    Izhikevich E M 2003 IEEE Trans. Neural Netw. 14 1569

    [96]

    Jolivet R, Lewis T J, Gerstner W 2004 J. Neurophysiol. 92 959

    [97]

    Brette R, Gerstner W 2005 J. Neurophysiol. 94 3637

    [98]

    Mihalas S, Niebur E 2009 Neural Comput. 21 704

    [99]

    McCormick D A, Wang Z, Huguenard J 1993 Cereb. Cortex 3 387

    [100]

    Lumer E D 1998 Cereb. Cortex 8 553

    [101]

    Yang Z Q 2010 Acta Phys. Sin. 59 5319 (in Chinese)[杨卓琴2010物理学报 59 5319]

    [102]

    Liang X B, Liu X S, Liu A Z, Wang B L 2009 Acta Phys. Sin. 58 5065 (in Chinese)[梁晓冰, 刘希顺, 刘安芝, 王博亮2009物理学报 58 5065]

    [103]

    Wang H Q, Yu L C, Chen Y 2009 Acta Phys. Sin. 58 5070 (in Chinese)[王慧巧, 俞连春, 陈勇2009物理学报 58 5070]

  • [1]

    Durstewitz D, Seamans J K, Sejnowski T J 2000 Nat. Neurosci. 3 1184

    [2]

    Cassidy A S, Merolla P, Arthur J V, Esser S K, Jackson B, Alvarez-Icaza R, Datta P, Sawada Jun, Wong T M, Feldman V, Amir A, Rubin D B, Akopyan F, McQuinn E, Risk W P, Modha D S 2013 The 2013 International Joint Conference on Neural Networks (IJCNN) Dallas, USA, August 4-9, 2013 p1

    [3]

    Smith G D, Cox C L, Sherman S M, Rinzel J 2000 J. Neurophysiol. 83 588

    [4]

    Fourcaud-Trocmé D, Hansel D, van Vreeswijk C, Brunel N 2003 J. Neurosci. 23 11628

    [5]

    Lapicque L 1907 J. Physiol. Pathol. Gen. 9 620

    [6]

    Abbott L F 1999 Brain Res. Bull. 50 303

    [7]

    Brunel N, van Rossum M C W 2007 Biol. Cybern. 97 337

    [8]

    McCulloch W S, Pitts W 1943 Bull. Math. Biol. 5 115

    [9]

    Bernstein J 1902 Pflgers Arch. 92 521

    [10]

    Hodgkin A L 1939 J. Physiol. 94 560

    [11]

    Hodgkin A L, Katz B 1949 J. Physiol. 108 37

    [12]

    Bonhoeffer K F 1948 J. Gen. Physiol. 32 69

    [13]

    Hodgkin A L 1948 J. Physiol. 107 165

    [14]

    Hebb D O 1949 The Organization of Behavior:A Neuropsychological Theory (1st Ed.) (London:Chapman & Hall) pp17-78

    [15]

    Hodgkin A L, Huxley A F, Katz B 1952 J. Physiol. 116 424

    [16]

    Eccles J C, Eccles R M, Lundberg A 1957 J. Physiol. 137 22

    [17]

    Rosenblatt F 1958 Psychol. Rev. 65 386

    [18]

    Fitzhugh R 1960 J. Gen. Physiol. 43 867

    [19]

    Nagumo J, Arimoto S, Yoshizawa S 1962 Proc. IRE 50 2061

    [20]

    Fuortes M G F, Mantegazzini F 1962 J. Gen. Physiol. 45 1163

    [21]

    Stein R B 1965 Biophys. J. 5 173

    [22]

    Geisler C D, Goldberg J M 1966 Biophys. J. 6 53

    [23]

    Rall W 1967 J. Neurophysiol. 30 1138

    [24]

    Stein R B 1967 Proc. R. Soc. Lond. B:Biol. Sci. 167 64

    [25]

    Knight B W 1972 J. Gen. Physiol. 59 734

    [26]

    Kernell D, Sj·holm H 1973 Acta Physiol. Scand. 87 40

    [27]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 117 500

    [28]

    Shapiro B I, Lenherr F K 1972 Biophys. J. 12 1145

    [29]

    Krinskii V I, Iu M K 1973 Biofizika 18 506

    [30]

    Krinskii V I, Iu M K 1973 Biofizika 18 878

    [31]

    Plant R E, Kim M 1976 Biophys. J. 16 227

    [32]

    Plant R E 1976 Computer Programs Biomed. 6 85

    [33]

    Rinzel J 1978 Studies in Mathematical Biology (1st Ed.) (Washington:Mathematical association of America) pp1-66

    [34]

    Fitzhugh R 1961 Biophys. J. 1 445

    [35]

    Connor J A, Stevens C F 1971 J. Physiol. 213 31

    [36]

    Connor J A, Walter D, Mckown R 1977 Biophys. J. 18 81

    [37]

    Morris C, Lecar H 1981 Biophys. J. 35 193

    [38]

    Rinzel J, Troy W C 1982 J. Chem. Phys. 76 1775

    [39]

    Chay T R 1985 Physica D 16 233

    [40]

    Chay T R, Keizer J 1983 Biophys. J. 42 181

    [41]

    Ermentrout G B, Kopell N 1986 SIAM J. Appl. Math. 46 233

    [42]

    Hindmarsh J L, Rose R M 1982 Nature 296 162

    [43]

    Hindmarsh J L, Rose R M 1984 Proc. R. Soc. Lond. B:Biol. Sci. 221 87

    [44]

    Rose R M, Hindmarsh J L 1985 Proc. R. Soc. Lond. B:Biol. Sci. 225 161

    [45]

    Rose R M, Hindmarsh J L 1989 Proc. R. Soc. Lond. B:Biol. Sci. 237 267

    [46]

    Rose R M, Hindmarsh J L 1989 Proc. R. Soc. Lond. B:Biol. Sci. 237 289

    [47]

    Rose R M, Hindmarsh J L 1989 Proc. R. Soc. Lond. B:Biol. Sci. 237 313

    [48]

    Chay T R, Rinzel J 1985 Biophys. J. 47 357

    [49]

    Connor J A, Stevens C F 1971 J. Physiol. 213 1

    [50]

    Connor J A, Stevens C F 1971 J. Physiol. 213 21

    [51]

    Connor J 1975 J. Neurophysiol. 38 922

    [52]

    Jack J J B, Noble D, Tsien R W 1975 Electric Current Flow in Excitable Cells (1st Ed.) (Oxford:Clarendon Press) pp132-224

    [53]

    Connors B W, Gutnick M J, Prince D A 1982 J. Neurophysiol. 48 1302

    [54]

    Plant R E 1978 Biophys. J. 21 217

    [55]

    Rinzel J 1985 Ordinary and Partial Differential Equations (1st Ed.) (Berlin:Springer-Verlag) pp304-316

    [56]

    Rinzel J 1985 Fed. Proc. 44 2944

    [57]

    Mircea S, Jones E G, Llinás R R 1990 Thalamic Oscillations and Signaling (1st Ed.) (New York:John Wiley) pp1-43

    [58]

    Rinzel J 1987 Mathematical Topics in Population Biology, Morphogenesis and Neurosciences (1st Ed.) (Berlin:Springer) pp267-281

    [59]

    Connors B W, Gutnick M J 1990 Trends Neurosci. 13 99

    [60]

    Rall W 1989 Methods in Neuronal Modeling:from Ions to Networks (2nd Ed.) (Cambridge:MIT Press) pp9-62

    [61]

    Ermentrout B 1996 Neural Comput. 8 979

    [62]

    Hoppensteadt F C, Izhikevich E M 1997 Weakly Connected Neural Networks (1st Ed.) (New York:Springer-Verlag) pp25-101

    [63]

    Rinzel J, Ermentrout G B 1989 Methods in Neuronal Modeling (1st Ed.) (Cambridge:MIT Press) pp135-169

    [64]

    Roth A, Häusser M 2001 J. Physiol. 535 445

    [65]

    Chay T R 1991 Biopolymers 31 1483

    [66]

    Stevens C F, Zador A M 1998 Proceedings of 5th Joint Symposium on Neural Computation San Diego, USA, May 16, 1998 p172

    [67]

    Wilson H R 1999 J. Theor. Biol. 200 375

    [68]

    Izhikevich E M 1999 IEEE Trans. Neural Netw. 10 499

    [69]

    Izhikevich E M 2001 SIAM Rev. 43 315

    [70]

    Izhikevich E M, Hoppensteadt F 2004 Int. J. Bifurcat. Chaos 14 3847

    [71]

    Abbott L F, van Vreeswijk C 1993 Phys. Rev. E 48 1483

    [72]

    Destexhe A, Rudolph M, Pare D 2003 Nat. Rev. Neurosci. 4 739

    [73]

    Avoli M, Hwa G G, Lacaille J C, Olivier A, Villemure J G 1994 Exp. Brain Res. 98 135

    [74]

    Hutcheon B, Miura R M, Puil E 1996 J. Neurophysiol. 76 683

    [75]

    Mainen Z F, Sejnowski T J 1996 Nature 382 363

    [76]

    Bower J M, Beeman D 1998 The Book of Genesis (1st Ed.) (New York:Springer) pp51-130

    [77]

    Destexhe A, Mainen Z F, Sejnowski T J 1994 J. Comput. Neurosci. 1 195

    [78]

    Hutcheon B, Yarom Y 2000 Trends Neurosci. 23 216

    [79]

    Latham P E, Richmond B J, Nelson P G, Nirenberg S 2000 J. Neurophysiol. 83 808

    [80]

    Pike F G, Goddard R S, Suckling J M, Ganter P, Kasthuri N, Paulsen O 2000 J. Physiol. 529 205

    [81]

    Hansel D, Mato G 2001 Phys. Rev. Lett. 86 4175

    [82]

    Izhikevich E M 2004 IEEE Trans. Neural Netw. 15 1063

    [83]

    Segev I, Fleshman J W, Burke R E 1989 Methods in Neuronal Modeling (1st Ed.) (Cambridge:MIT Press) pp63-96

    [84]

    Pinsky P F, Rinzel J 1994 J. Comput. Neurosci. 1 39

    [85]

    Wang X J, Buzsáki G 1996 J. Neurosci. 16 6402

    [86]

    Hutcheon B, Miura R M, Puil E 1996 J. Neurophysiol. 76 698

    [87]

    Manor Y, Rinzel J, Segev I, Yarom Y 1997 J. Neurophysiol. 77 2736

    [88]

    Koch C, Segev I 1998 Methods in Neuronal Modeling:From Ions to Networks (2nd Ed.) (Cambridge:MIT Press) pp93-136

    [89]

    Feng J, Brown D 2000 Bull. Math. Biol. 62 467

    [90]

    Feng J 2001 Neural Netw. 14 955

    [91]

    Kistler W M, Gerstner W, van Hemmen J L 1997 Neural Comput. 9 1015

    [92]

    Izhikevich E M 2000 Int. J. Bifurcat. Chaos 10 1171

    [93]

    Izhikevich E M 2001 Neural Netw. 14 883

    [94]

    Gerstner W, Kistler W M 2002 Spiking Neuron Models:Single Neurons, Populations, Plasticity (1st Ed.) (Cambridge:Cambridge University Press) pp31-146

    [95]

    Izhikevich E M 2003 IEEE Trans. Neural Netw. 14 1569

    [96]

    Jolivet R, Lewis T J, Gerstner W 2004 J. Neurophysiol. 92 959

    [97]

    Brette R, Gerstner W 2005 J. Neurophysiol. 94 3637

    [98]

    Mihalas S, Niebur E 2009 Neural Comput. 21 704

    [99]

    McCormick D A, Wang Z, Huguenard J 1993 Cereb. Cortex 3 387

    [100]

    Lumer E D 1998 Cereb. Cortex 8 553

    [101]

    Yang Z Q 2010 Acta Phys. Sin. 59 5319 (in Chinese)[杨卓琴2010物理学报 59 5319]

    [102]

    Liang X B, Liu X S, Liu A Z, Wang B L 2009 Acta Phys. Sin. 58 5065 (in Chinese)[梁晓冰, 刘希顺, 刘安芝, 王博亮2009物理学报 58 5065]

    [103]

    Wang H Q, Yu L C, Chen Y 2009 Acta Phys. Sin. 58 5070 (in Chinese)[王慧巧, 俞连春, 陈勇2009物理学报 58 5070]

  • [1] Huang Bin-Yuan, He Zhi, Chen Yu. Charging performance of quantum batteries based on intensity-dependent Dicke model. Acta Physica Sinica, 2023, 72(18): 180301. doi: 10.7498/aps.72.20230578
    [2] Liang Yan-Mei, Lu Bo, Gu Hua-Guang. Analysis to dynamics of complex electrical activities in Wilson model of brain neocortical neuron using fast-slow variable dissection with two slow variables. Acta Physica Sinica, 2022, 71(23): 230502. doi: 10.7498/aps.71.20221416
    [3] Wu Jing, Pan Chun-Yu. Research on inductive neuron model and its dynamic characteristics. Acta Physica Sinica, 2022, 71(4): 048701. doi: 10.7498/aps.71.20211626
    [4] Research on Inductive Neuron Model and its Dynamic Characteristics. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211626
    [5] Wang Yue-E, Wu Bao-Wei, Wang Rui. Asynchronous stabilization of switched systems: Adjacent mode-dependent average dwell time. Acta Physica Sinica, 2015, 64(5): 050201. doi: 10.7498/aps.64.050201
    [6] Jin Zhao, Qiao Li-Ping, Guo Chen, Wang Jiang-An, Richard C. Liu. Electronic conductivity effective masses along arbitrary directional channel in uniaxial strained Si(001). Acta Physica Sinica, 2013, 62(5): 058501. doi: 10.7498/aps.62.058501
    [7] Jin Qi-Tao, Wang Jiang, Yi Guo-Sheng, Li Hui-Yan, Deng Bin, Wei Xi-Le, Che Yan-Qiu. Action potential initial dynamical mechanism analysis in a minimum neuron model exposure to TMS induced electric field. Acta Physica Sinica, 2012, 61(11): 118701. doi: 10.7498/aps.61.118701
    [8] Wang Xing-Yuan, Ren Xiao-Li, Zhang Yong-Lei. Full-order and reduced-order optimal synchronization of neurons model with unknown parameters. Acta Physica Sinica, 2012, 61(6): 060508. doi: 10.7498/aps.61.060508
    [9] Jin Qi-Tao, Wang Jiang, Wei Xi-Le, Deng Bin, Che Yan-Qiu. Action potential initial dynamical control and analysis of a minimum neuron model. Acta Physica Sinica, 2011, 60(9): 098701. doi: 10.7498/aps.60.098701
    [10] Li Chun-Guang, Chen Jun. Circuit design of tabu learning neuron models and their dynamic behavior. Acta Physica Sinica, 2011, 60(2): 020502. doi: 10.7498/aps.60.020502
    [11] Li Chun-Guang, Chen Jun. Chaos in a neuron model with adaptive feedback synapse: Electronic circuit design. Acta Physica Sinica, 2011, 60(5): 050503. doi: 10.7498/aps.60.050503
    [12] Zhao Li-Xia, Zhang He-Ming, Hu Hui-Yong, Dai Xian-Ying, Xuan Rong-Xi. Model of electronical conductivity effective mass of strained Si. Acta Physica Sinica, 2010, 59(9): 6545-6548. doi: 10.7498/aps.59.6545
    [13] Liu Yong, Xie Yong. Dynamical characteristics of the fractional-order FitzHugh-Nagumo model neuron and its synchronization. Acta Physica Sinica, 2010, 59(3): 2147-2155. doi: 10.7498/aps.59.2147
    [14] Liu Zhi-Hong, Zhou Yu-Rong, Zhang An-Ying, Pang Xiao-Feng. Coherence resonance in a nonlinear neuronal models driven by correlated colored noise. Acta Physica Sinica, 2010, 59(2): 699-704. doi: 10.7498/aps.59.699
    [15] Wang Mao-Sheng, Huang Wan-Xia, Cui Zhi-Feng. Coherence bi-resonance in a two-dimensional neural map. Acta Physica Sinica, 2010, 59(7): 4485-4489. doi: 10.7498/aps.59.4485
    [16] Wang Mao-Sheng. Frequency-dependent stochastic resonance in a two-dimensional neural map. Acta Physica Sinica, 2009, 58(10): 6833-6837. doi: 10.7498/aps.58.6833
    [17] Quan Rong-Hui, Han Jian-Wei, Huang Jian-Guo, Zhang Zhen-Long. Modeling analysis of radiation induced conductivity in electrical insulator. Acta Physica Sinica, 2007, 56(11): 6642-6647. doi: 10.7498/aps.56.6642
    [18] Song Yang, Zhao Tong-Jun, Liu Jin-Wei, Wang Xiang-Qun, Zhan Yong. Impact of Gaussian white noise on a two-dimensional neural map. Acta Physica Sinica, 2006, 55(8): 4020-4025. doi: 10.7498/aps.55.4020
    [19] CHANG SHENG-JIANG, LIU YUE, ZHANG WEN-WEI, SHEN JIN-YUAN, ZHAI HONG-CHEN, ZHANG YAN-XIN. A NEURAL NETWORK MODEL FOR UNEQUALLY DISTRIBUTED NEURON STATES AND ITS OPTICAL IMPLEMENTATION. Acta Physica Sinica, 1998, 47(7): 1101-1109. doi: 10.7498/aps.47.1101
    [20] WAN MEI-XIANG, WANG PING. THE PHYSICAL MODEL OF METHOD OF VOLTAGE SHORTED COMPACTION (VSC) FOR CONDUCTIVITY MEASUREMENT. Acta Physica Sinica, 1986, 35(1): 82-88. doi: 10.7498/aps.35.82
Metrics
  • Abstract views:  8546
  • PDF Downloads:  1281
  • Cited By: 0
Publishing process
  • Received Date:  23 July 2016
  • Accepted Date:  30 August 2016
  • Published Online:  05 December 2016

/

返回文章
返回