Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Temperature measurement accuracy enhancement in the Brillouin optical time domain reflectometry system using the sideband of Brillouin gain spectrum demodulation

Liu Rui-Xia Zhang Ming-Jiang Zhang Jian-Zhong Liu Yi Jin Bao-Quan Bai Qing Li Zhe-Zhe

Citation:

Temperature measurement accuracy enhancement in the Brillouin optical time domain reflectometry system using the sideband of Brillouin gain spectrum demodulation

Liu Rui-Xia, Zhang Ming-Jiang, Zhang Jian-Zhong, Liu Yi, Jin Bao-Quan, Bai Qing, Li Zhe-Zhe
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A novel method by demodulating the sideband of Brillouin gain spectrum (BGS) is proposed and demonstrated in order to enhance temperature measurement accuracy in a Brillouin optical time domain reflectometry (BOTDR) sensing system in this paper.Firstly,the characteristic of frequency shift of an acoustic optical modulator (AOM) is utilized to generate the sideband of BGS,and the influence of the peak power of the probe optical pulse on the temperature measurement accuracy is also investigated.Moreover,the theoretical analysis shows that benefiting from the reference continuous light from the source laser by the coherent detection,the intensity of the sideband is higher than that of the central peak,which indicates that the higher signal-to-noise ratio (SNR) can be expected by demodulating the sideband of BGS instead of the central peak.Thus the demodulating the sideband of BGS can further improve temperature measurement accuracy in the BOTDR sensing system theoretically.Secondly,the experimental setup of the distributed temperature sensing system based on BOTDR is built.The AOM is selected as the optical pulse modulator to produce high-extinction-ratio probe pulse light,following the frequency upshift of the injection light.The beat signal generated by coherently detecting the backscattering light from the fiber under test (FUT) and the reference light from the source laser is acquired.Furthermore,the central peak and the left sideband of BGS are respectively scanned by using microwave heterodyne frequency shift technique.The time domain waveforms at each frequency point are then obtained and Lorentzian curve fitting is performed at each sampling position,thus Brillouin frequency shift (BFS) along the FUT is plotted and the temperature is demodulated along the FUT based on the linear dependence of the BFS on the temperature in the optical fiber.Finally,the experimental results show that the peak power of the left sideband of Brillouin gain spectrum is about 3.27 dB stronger than that of the central peak.Meanwhile,the linewidth of left sideband of BGS is about 14.7 MHz narrower than that of the central peak at -1 dB point in the same conditions.When the left sideband of BGS is scanned,the SNR of the BOTDR system is improved by 4.35 dB due to the contribution of the reference light by coherently detecting and eliminating the effect of the coherent Rayleigh noise,and then the temperature measurement accuracy of 0.5℃ is achieved over a 10.2 km sensing fiber.
      Corresponding author: Zhang Ming-Jiang, zhangmingjiang@tyut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61377089, 61527819), the Key Science and Technology Research Project Based on Coal of Shanxi Province, China (Grant No. MQ2014-09), and the Coal-Bed Methane Joint Research Fund of Shanxi Province, China (Grant No. 2015012005).
    [1]

    Liu D M, Sun Q Z 2009 Laser Optoelect. Prog. 46 29 (in Chinese)[刘德明, 孙琪真2009激光与光电子学进展 46 29]

    [2]

    Zhao L J 2010 Acta Phys. Sin. 59 6219 (in Chinese)[赵丽娟2010物理学报 59 6219]

    [3]

    Liu T G, Wang S, Jiang J F, Liu K, Yin J D 2014 Chin. J. Sci. Instrum. 35 1681 (in Chinese)[刘铁根, 王双, 江俊峰, 刘琨, 尹金德2014仪器仪表学报 35 1681]

    [4]

    Leung C K Y, Wan K T, Inaudi D, Bao X Y, Habel W, Zhou Z, Ou J P, Ghandehari M, Wu H C 2015 Mater. Struct. 48 871

    [5]

    Zhang C, Rao Y J, Jia X H, Deng K, Chang L, Ran Z L 2011 Acta Phys. Sin. 60 104211 (in Chinese)[张超, 饶云江, 贾新鸿, 邓坤, 苌亮, 冉曾令2011物理学报 60 104211]

    [6]

    Bao X Y, Chen L 2012 IEEE Sensors 12 8601

    [7]

    Xia H Y, Zhang C X, Mu H Q, Sun D S 2009 Appl. Opt. 48 189

    [8]

    Hu J C, Chen B, Li G Y, Lin Z Q 2010 Advanced Sensor Systems and Applications Iv Beijing, China, October 18-20, 2010 p785309

    [9]

    Wang F, Li C L, Zhao X D, Zhang X P 2012 Appl. Opt. 51 176

    [10]

    Wang F, Zhang X P, Wang X C, Chen H S 2013 Opt. Lett. 38 2437

    [11]

    Hao Y Q, Ye Q, Pan Z Q, Cai H W, Qu R H 2014 Chin. Phys. B 23 110703

    [12]

    Song M P, Xia Q L, Feng K B, Lu Y, Yin C 2016 Opt. Quan. Electron. 48 30

    [13]

    Maughan S M, Kee H H, Newson T P 2001 IEEE Photon. Technol. Lett. 13 511

    [14]

    Snoddy J, Li Y, Ravet F, Bao X Y 2007 Appl. Opt. 46 1482

    [15]

    Hao Y Q, Ye Q, Pan Z Q, Yang F, Cai H W, Qu R H, Zhang Q Y, Yang Z M 2012 IEEE Photon. J. 4 1686

    [16]

    Lu Y G, Yao Y G, Zhao X D, Wang F, Zhang X P 2013 Opt. Commun. 297 48

    [17]

    Zhang Y X, Wu X L, Ying Z F, Zhang X P 2014 Electron. Lett. 50 1014

    [18]

    Kurashima T, Horiguchi T, Izumita H, Furukawa S, Koyamada Y 1993 IEICE Trans. Commun. 76 382

    [19]

    Shimizu K, Horiguchi T, Koyamada Y, Kurashima T 1994 J. Lightwave Technol. 12 730

    [20]

    Kwon H, Kim S, Yeom S, Kang B, Kim K, Kim T, Jang H, Kim J, Kang S 2013 Opt. Commun. 294 59

    [21]

    Wang R G 2012 Ph. D. Dissertation (Nanjing:Nanjing University) (in Chinese)[王如刚2012博士学位论文(南京:南京大学)]

    [22]

    Liu J W, Du Z H, Qi R B, Xu K X 2012 Nanotech. Prec. Eng. 10 332 (in Chinese)[刘景旺, 杜振辉, 齐汝宾, 徐可欣2012纳米技术与精密工程 10 332]

    [23]

    Li Z L, Yan L S, Peng Y L, Pan W, Luo B, Shao L Y 2015 Opt. Express 23 5744

    [24]

    Souza K D 2006 Meas. Sci. Technol. 17 1065

    [25]

    Cahill J P, Okusaga O, Zhou W M, Menyuk C R, Carter G M 2015 Opt. Express 23 6400

    [26]

    Xie S R 2013 Ph. D. Dissertation (Beijing:Tsinghua University) (in Chinese)[谢尚然2013博士学位论文(北京:清华大学)]

    [27]

    Dong Y K, Jiang T F, Teng L, Zhang H Y, Chen L, Bao X Y, Lu Z W 2014 Opt. Lett. 39 2967

  • [1]

    Liu D M, Sun Q Z 2009 Laser Optoelect. Prog. 46 29 (in Chinese)[刘德明, 孙琪真2009激光与光电子学进展 46 29]

    [2]

    Zhao L J 2010 Acta Phys. Sin. 59 6219 (in Chinese)[赵丽娟2010物理学报 59 6219]

    [3]

    Liu T G, Wang S, Jiang J F, Liu K, Yin J D 2014 Chin. J. Sci. Instrum. 35 1681 (in Chinese)[刘铁根, 王双, 江俊峰, 刘琨, 尹金德2014仪器仪表学报 35 1681]

    [4]

    Leung C K Y, Wan K T, Inaudi D, Bao X Y, Habel W, Zhou Z, Ou J P, Ghandehari M, Wu H C 2015 Mater. Struct. 48 871

    [5]

    Zhang C, Rao Y J, Jia X H, Deng K, Chang L, Ran Z L 2011 Acta Phys. Sin. 60 104211 (in Chinese)[张超, 饶云江, 贾新鸿, 邓坤, 苌亮, 冉曾令2011物理学报 60 104211]

    [6]

    Bao X Y, Chen L 2012 IEEE Sensors 12 8601

    [7]

    Xia H Y, Zhang C X, Mu H Q, Sun D S 2009 Appl. Opt. 48 189

    [8]

    Hu J C, Chen B, Li G Y, Lin Z Q 2010 Advanced Sensor Systems and Applications Iv Beijing, China, October 18-20, 2010 p785309

    [9]

    Wang F, Li C L, Zhao X D, Zhang X P 2012 Appl. Opt. 51 176

    [10]

    Wang F, Zhang X P, Wang X C, Chen H S 2013 Opt. Lett. 38 2437

    [11]

    Hao Y Q, Ye Q, Pan Z Q, Cai H W, Qu R H 2014 Chin. Phys. B 23 110703

    [12]

    Song M P, Xia Q L, Feng K B, Lu Y, Yin C 2016 Opt. Quan. Electron. 48 30

    [13]

    Maughan S M, Kee H H, Newson T P 2001 IEEE Photon. Technol. Lett. 13 511

    [14]

    Snoddy J, Li Y, Ravet F, Bao X Y 2007 Appl. Opt. 46 1482

    [15]

    Hao Y Q, Ye Q, Pan Z Q, Yang F, Cai H W, Qu R H, Zhang Q Y, Yang Z M 2012 IEEE Photon. J. 4 1686

    [16]

    Lu Y G, Yao Y G, Zhao X D, Wang F, Zhang X P 2013 Opt. Commun. 297 48

    [17]

    Zhang Y X, Wu X L, Ying Z F, Zhang X P 2014 Electron. Lett. 50 1014

    [18]

    Kurashima T, Horiguchi T, Izumita H, Furukawa S, Koyamada Y 1993 IEICE Trans. Commun. 76 382

    [19]

    Shimizu K, Horiguchi T, Koyamada Y, Kurashima T 1994 J. Lightwave Technol. 12 730

    [20]

    Kwon H, Kim S, Yeom S, Kang B, Kim K, Kim T, Jang H, Kim J, Kang S 2013 Opt. Commun. 294 59

    [21]

    Wang R G 2012 Ph. D. Dissertation (Nanjing:Nanjing University) (in Chinese)[王如刚2012博士学位论文(南京:南京大学)]

    [22]

    Liu J W, Du Z H, Qi R B, Xu K X 2012 Nanotech. Prec. Eng. 10 332 (in Chinese)[刘景旺, 杜振辉, 齐汝宾, 徐可欣2012纳米技术与精密工程 10 332]

    [23]

    Li Z L, Yan L S, Peng Y L, Pan W, Luo B, Shao L Y 2015 Opt. Express 23 5744

    [24]

    Souza K D 2006 Meas. Sci. Technol. 17 1065

    [25]

    Cahill J P, Okusaga O, Zhou W M, Menyuk C R, Carter G M 2015 Opt. Express 23 6400

    [26]

    Xie S R 2013 Ph. D. Dissertation (Beijing:Tsinghua University) (in Chinese)[谢尚然2013博士学位论文(北京:清华大学)]

    [27]

    Dong Y K, Jiang T F, Teng L, Zhang H Y, Chen L, Bao X Y, Lu Z W 2014 Opt. Lett. 39 2967

  • [1] Wang Wu-Yue, Yu Yu, Li Yun-Fei, Wang Gong, Li Kai, Wang Zhi-Yong, Song Chang-Yu, Li Sen-Sen, Li Yu-Hai, Liu Tong-Yu, Yan Xiu-Sheng, Wang Yu-Lei, Lü Zhi-Wei. Ridge-type suspended waveguide Brillouin laser. Acta Physica Sinica, 2022, 71(2): 024203. doi: 10.7498/aps.71.20211539
    [2] Wang Ya-Hui, Zhao Le, Hu Xin-Xin, Guo Yang, Zhang Jian-Zhong, Qiao Li-Jun, Wang Tao, Gao Shao-Hua, Zhang Ming-Jiang. High-accuracy dual-slope-assisted chaotic Brillouin fiber dynamic strain measurement. Acta Physica Sinica, 2021, 70(10): 100704. doi: 10.7498/aps.70.20201892
    [3] Ren Xiu-Yun, Tian Zhao-Shuo, Sun Lan-Jun, Fu Shi-You. Effects of laser wavelength on both water temperature measurement precision and detection depth of Raman scattering lidar system. Acta Physica Sinica, 2014, 63(16): 164209. doi: 10.7498/aps.63.164209
    [4] Gao Wei, Liu Sheng-Nan, Bi Ya-Feng, Hu Xiao-Bo, Pu Shao-Zhi, Zhao Hong. Flat-top Brillouin gain spectrum with a controllable bandwidth produceal from multiple-lines pump modulation in liquid-core optical fibers. Acta Physica Sinica, 2013, 62(19): 194206. doi: 10.7498/aps.62.194206
    [5] Zhang Chao, Rao Yun-Jiang, Jia Xin-Hong, Deng Kun, Chang Liang, Ran Zeng-Ling. Influence of optical simple pulse coding on the Brillouin optical time domain analyzer based on bi-directional Raman amplification. Acta Physica Sinica, 2011, 60(10): 104211. doi: 10.7498/aps.60.104211
    [6] Liu Ling-Yu, Tian Hui-Ping, Ji Yue-Feng. Soliton pulse propagation and optical delay properties in photonic crystal waveguide. Acta Physica Sinica, 2011, 60(10): 104216. doi: 10.7498/aps.60.104216
    [7] Zheng Di, Pan Wei, Yan Lian-Shan, Luo Bin, Zou Xi-Hua, Jiang Ning, Ma Ya-Nan. Zero-broadening slow and fast light using an optimized Brillouin comb gain for arbitrary periodic signals. Acta Physica Sinica, 2010, 59(2): 1040-1046. doi: 10.7498/aps.59.1040
    [8] Zhang Zhi-Yao, Zhou Xiao-Jun, Shi Sheng-Hui, Liang Rui. Analysis of pulse distortion in Brillouin slow light using broadband pump with rectangular spectrum. Acta Physica Sinica, 2010, 59(7): 4694-4700. doi: 10.7498/aps.59.4694
    [9] Zhang Chao, Rao Yun-Jiang, Jia Xin-Hong, Chang Liang, Ran Zeng-Ling. Brillouin optical time domain analyzer based on bi-directional Raman amplification. Acta Physica Sinica, 2010, 59(8): 5523-5527. doi: 10.7498/aps.59.5523
    [10] Liu Sheng, Zhang Peng, Xiao Fa-Jun, Gan Xue-Tao, Zhao Jian-Lin. Analysis of linear defect modes in two-dimensional photonic lattices by employing Brillouin zone spectroscopy. Acta Physica Sinica, 2009, 58(8): 5467-5472. doi: 10.7498/aps.58.5467
    [11] Yang Jun, Ruan Shuang-Chen, Zhang Min. The influence of pump power on pulse shape control by Brillouin amplification of two Brillouin amplifiers. Acta Physica Sinica, 2008, 57(6): 3543-3546. doi: 10.7498/aps.57.3543
    [12] Liu Xia, Niu Jin-Yan, Sun Jiang, Mi Xin, Jiang Qian, Wu Ling-An, Fu Pan-Ming. Brillouin-enhanced nondegenerate four-wave mixing. Acta Physica Sinica, 2008, 57(8): 4991-4994. doi: 10.7498/aps.57.4991
    [13] Yang Jun, Lü Zhi-Wei, He Wei-Ming, Ruan Shuang-Chen. Pulse shape control by Brillouin amplification of two Brillouin amplifiers. Acta Physica Sinica, 2007, 56(8): 4622-4626. doi: 10.7498/aps.56.4622
    [14] Gao Wei, Lü Zhi-Wei, He Wei-Ming, Zhu Cheng-Yu, Dong Yong-Kang. Research on selective optical amplification of Brillouin spectrum of weak scattering signals in water. Acta Physica Sinica, 2007, 56(5): 2693-2698. doi: 10.7498/aps.56.2693
    [15] Zhu Cheng-Yu, Lü Zhi-Wei, He Wei-Ming, Ba De-Xin, Wang Yu-Lei, Gao Wei, Dong Yong-Kang. Theoretical study on temporal behavior of Brillouin-enhanced four-wave mixing. Acta Physica Sinica, 2007, 56(1): 229-235. doi: 10.7498/aps.56.229
    [16] Hasi Wu-Li-Ji, Lü Zhi-Wei, He Wei-Ming, Wang Shuang-Yi. Study on Brillouin amplification in different liquid media. Acta Physica Sinica, 2005, 54(2): 742-748. doi: 10.7498/aps.54.742
    [17] Ding Ying-Chun, Lü Zhi-Wei, He Wei-Ming. Study on pulse waveform of stimulated Brillouin amplification. Acta Physica Sinica, 2003, 52(9): 2165-2169. doi: 10.7498/aps.52.2165
    [18] Ding Ying-Chun, Lv Zhi-Wei, He Wei-Ming. The influence of the ratio of seed to pump energy on Brillouin amplification*. Acta Physica Sinica, 2002, 51(12): 2767-2771. doi: 10.7498/aps.51.2767
    [19] Lv Zhi-Wei, Ding Ying-Chun, He Wei-Ming. . Acta Physica Sinica, 2002, 51(6): 1286-1290. doi: 10.7498/aps.51.1286
    [20] XUE FANG-SHI. SYMMETRY AVERAGE POINTS IN THE BRILLOUIN ZONE. Acta Physica Sinica, 1987, 36(6): 814-818. doi: 10.7498/aps.36.814
Metrics
  • Abstract views:  5325
  • PDF Downloads:  234
  • Cited By: 0
Publishing process
  • Received Date:  04 May 2016
  • Accepted Date:  20 July 2016
  • Published Online:  05 December 2016

/

返回文章
返回