Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Relationship between dielectric properties and nanoparticle dispersion of nano-SiO2/epoxy composite

Gao Ming-Ze Zhang Pei-Hong

Citation:

Relationship between dielectric properties and nanoparticle dispersion of nano-SiO2/epoxy composite

Gao Ming-Ze, Zhang Pei-Hong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Polymer nanocomposites have advantage over traditional materials in electrical properties from the standpoint of dielectrics and electrical insulation. The influences of nanoparticle dispersion in the matrix, which is mainly caused by different preparation methods, on the dielectric properties of composites have been given in the past work. In order to investigate the relationship between the dispersion of nanoparticles in the matrix and the dielectric properties of composites, nano-SiO2/epoxy composites are prepared by different methods. Nano-SiO2 is first modified by silane coupling agent to obtain nano-SiO2 powder and nano-SiO2 dispersing liquid, then unmodified and modified nano-SiO2 powder are mixed into epoxy by mechanical mixing method, and the modified nano-SiO2 dispersing liquid is mixed into epoxy by bubble mixing method to prepare nano-SiO2/epoxy composites. The amounts of nano-SiO2 content in the composites are 2 wt%, 3 wt%, 4 wt%, 5 wt% and 6 wt%, respectively. Breakdown strength and corona-resistance characteristics of the composites are tested. The results show that with the increase of the nano-SiO2 content, the breakdown strength and corona-resistance of nano-SiO2/epoxy composites increase. The maximal breakdown strength appears in the composites with 5 wt% nano-SiO2. This appearance accords with percolation theory. The composites prepared by bubble mixing method have better breakdown strengths and corona-resistances than the composites prepared by mechanical mixing method. The scanning electron microscope images of the nano-SiO2/epoxy composites are analyzed by Image J software to obtain the information about the nanoparticle number in the special grid. Morisita's index is used to characterize the dispersion of nano-SiO2 in the matrix quantitatively. It is concluded that the composites prepared by bubble mixing method have better dispersion than those prepared by mechanical mixing method. Compared with the unmodified nano-SiO2, modified one has good dispersion in the composite because of the improved compatibility between the nanoparticles and the matrix. Based on the role that nano-SiO2 particles block discharge from developing in the composite, the better dispersion means that there are more nanoparticles and more barriers on the discharge path. Meanwhile, the better dispersion also means that more interface areas form between nano-SiO2 and matrix. The shallower traps supplied by the interface area will contribute less energy when current carriers jump into and out off the traps. So the better the dispersion of nano-SiO2 in the matrix, the superior the breakdown strength and corona-resistance of the composites are.
      Corresponding author: Zhang Pei-Hong, zph@hrbust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51277044).
    [1]

    Kurimoto M, Okubo H, Kato K, Hanai M, Hoshina Y, Takei M, Hayakawa N 2010 IEEE Trans. Dielectr. Electr. Insul. 17 662

    [2]

    Tanaka T 2005 IEEE Trans. Dielectr. Electr. Insul. 12 914

    [3]

    Fuse N, Sato H, Ohki Y, Tanaka T 2009 IEEE Trans. Dielectr. Electr. Insul. 16 524

    [4]

    Fuse N, Ohki Y, Kozako M, Tanaka T 2008 IEEE Trans. Dielectr. Electr. Insul. 15 161

    [5]

    Ru J S, Min D M, Zhang C, Li S T, Xing Z L, Li G C 2016 Acta Phys. Sin. 65 047701 (in Chinese)[茹佳胜, 闵道敏, 张翀, 李盛涛, 邢照亮, 李国倡2016物理学报 65 047701]

    [6]

    Green C, Vaughan A 2008 IEEE Electr. Insul. Mag. 24 6

    [7]

    Montanari G C 2011 IEEE Trans. Dielectr. Electr. Insul. 18 339

    [8]

    Zhou L R, Wu G N, Gao B, Chao K J 2009 Trans. China Electrotech. Soc. 24 6 (in Chinese)[周力任, 吴广宁, 高波, 曹开江2009电工技术学报 24 6]

    [9]

    Masuda S, Okuzumi S, Kurniant R, Murakami Y, Nagao M, Murata Y, Sekiguchi Y 2007 IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena Vancouver, Canada, October 14-17, 2007 p290

    [10]

    Chen G, Zhang C, Stevens G 2007 IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena Vancouver, Canada, October 14-17, 2007 p275

    [11]

    Calebrese C, Hui L, Schadler L S, Nelson J K 2011 IEEE Trans. Dielectr. Electr. Insul. 18 938

    [12]

    Murakami Y, Nemoto M, Okuzumi S, Masuda S, Nagao M, Hozumi N, Sekiguchi Y, Murata Y 2008 IEEE Trans. Dielectr. Electr. Insul. 15 33

    [13]

    Singha S, Thomas M J 2008 IEEE Trans. Dielectr. Electr. Insul. 15 12

    [14]

    Li W, Hillborg H, Gedde U W 2015 IEEE Trans. Dielectr. Electr. Insul. 22 3536

    [15]

    Iyer G, Gorurl R S, Krivda A 2008 IEEE Trans. Dielectr. Electr. Insul. 19 1070

    [16]

    Kim D, Lee J S, Barry C M F, Mead J 2007 Microsc. Res. Techniq. 70 539

    [17]

    Leggoe J 2005 Scripta Mater. 53 1263

    [18]

    Burnis D L, Boesl B, Bourne G R, Sawyer W G 2007 Macromol. Mater. Eng. 292 387

    [19]

    Hui L, Smith R C, Wang X, Nelson J K, Schadler L S 2008 IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena Quebec, Canada, October 26-29, 2008 p317

    [20]

    Gao M Z 2014 M. S. Dissertation (Harbin:Harbin University of Science and Technology) (in Chinese)[高铭泽2014硕士学位论文(哈尔滨:哈尔滨理工大学)]

    [21]

    Wu Q H 2006 Progress in Condensed Matter Physics (Shanghai:East hina University of Science and Technology Press) p247(in Chinese)[吴其晔2006高分子凝聚态物理及其进展(上海:华东理工大学出版社)第247页]

    [22]

    Preetha P, Thomas M J 2011 IEEE Trans. Dielectr. Electr. Insul. 18 1526

    [23]

    Lewis T J 2004 IEEE Trans. Dielectr. Electr. Insul. 11 739

    [24]

    Luo Y, Wu G N, Peng J, Zhang Y Q, Xu H H, Wang P 2012 High Voltage Engineering 38 2455 (in Chinese)[罗杨, 吴广宁, 彭佳, 张依强, 徐慧慧, 王鹏2012高电压技术 38 2455]

    [25]

    Morisita M 1959 Measuring of the Dispersion and Analysis of Distribution Patterns (Kyushu:Kyushu University Press) p215

    [26]

    Li Y C 2005 M. S. Dissertation (Beijing:Beijing University of Chemical Technology) (in Chinese)[李艳臣2005硕士学位论文(北京:北京化工大学)]

    [27]

    Preetha P, Thomas M J 2011 IEEE Trans. Dielectr. Electr. Insul. 18 264

    [28]

    Tanaka T, Kozako M, Fuse N, Ohki Y 2005 IEEE Trans. Dielectr. Electr. Insul. 12 669

    [29]

    Zhang P H 2006 Ph. D. Dissertation (Harbin:Harbin University of Science and Technology) (in Chinese)[张沛红2006博士学位论文(哈尔滨:哈尔滨理工大学)]

  • [1]

    Kurimoto M, Okubo H, Kato K, Hanai M, Hoshina Y, Takei M, Hayakawa N 2010 IEEE Trans. Dielectr. Electr. Insul. 17 662

    [2]

    Tanaka T 2005 IEEE Trans. Dielectr. Electr. Insul. 12 914

    [3]

    Fuse N, Sato H, Ohki Y, Tanaka T 2009 IEEE Trans. Dielectr. Electr. Insul. 16 524

    [4]

    Fuse N, Ohki Y, Kozako M, Tanaka T 2008 IEEE Trans. Dielectr. Electr. Insul. 15 161

    [5]

    Ru J S, Min D M, Zhang C, Li S T, Xing Z L, Li G C 2016 Acta Phys. Sin. 65 047701 (in Chinese)[茹佳胜, 闵道敏, 张翀, 李盛涛, 邢照亮, 李国倡2016物理学报 65 047701]

    [6]

    Green C, Vaughan A 2008 IEEE Electr. Insul. Mag. 24 6

    [7]

    Montanari G C 2011 IEEE Trans. Dielectr. Electr. Insul. 18 339

    [8]

    Zhou L R, Wu G N, Gao B, Chao K J 2009 Trans. China Electrotech. Soc. 24 6 (in Chinese)[周力任, 吴广宁, 高波, 曹开江2009电工技术学报 24 6]

    [9]

    Masuda S, Okuzumi S, Kurniant R, Murakami Y, Nagao M, Murata Y, Sekiguchi Y 2007 IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena Vancouver, Canada, October 14-17, 2007 p290

    [10]

    Chen G, Zhang C, Stevens G 2007 IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena Vancouver, Canada, October 14-17, 2007 p275

    [11]

    Calebrese C, Hui L, Schadler L S, Nelson J K 2011 IEEE Trans. Dielectr. Electr. Insul. 18 938

    [12]

    Murakami Y, Nemoto M, Okuzumi S, Masuda S, Nagao M, Hozumi N, Sekiguchi Y, Murata Y 2008 IEEE Trans. Dielectr. Electr. Insul. 15 33

    [13]

    Singha S, Thomas M J 2008 IEEE Trans. Dielectr. Electr. Insul. 15 12

    [14]

    Li W, Hillborg H, Gedde U W 2015 IEEE Trans. Dielectr. Electr. Insul. 22 3536

    [15]

    Iyer G, Gorurl R S, Krivda A 2008 IEEE Trans. Dielectr. Electr. Insul. 19 1070

    [16]

    Kim D, Lee J S, Barry C M F, Mead J 2007 Microsc. Res. Techniq. 70 539

    [17]

    Leggoe J 2005 Scripta Mater. 53 1263

    [18]

    Burnis D L, Boesl B, Bourne G R, Sawyer W G 2007 Macromol. Mater. Eng. 292 387

    [19]

    Hui L, Smith R C, Wang X, Nelson J K, Schadler L S 2008 IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena Quebec, Canada, October 26-29, 2008 p317

    [20]

    Gao M Z 2014 M. S. Dissertation (Harbin:Harbin University of Science and Technology) (in Chinese)[高铭泽2014硕士学位论文(哈尔滨:哈尔滨理工大学)]

    [21]

    Wu Q H 2006 Progress in Condensed Matter Physics (Shanghai:East hina University of Science and Technology Press) p247(in Chinese)[吴其晔2006高分子凝聚态物理及其进展(上海:华东理工大学出版社)第247页]

    [22]

    Preetha P, Thomas M J 2011 IEEE Trans. Dielectr. Electr. Insul. 18 1526

    [23]

    Lewis T J 2004 IEEE Trans. Dielectr. Electr. Insul. 11 739

    [24]

    Luo Y, Wu G N, Peng J, Zhang Y Q, Xu H H, Wang P 2012 High Voltage Engineering 38 2455 (in Chinese)[罗杨, 吴广宁, 彭佳, 张依强, 徐慧慧, 王鹏2012高电压技术 38 2455]

    [25]

    Morisita M 1959 Measuring of the Dispersion and Analysis of Distribution Patterns (Kyushu:Kyushu University Press) p215

    [26]

    Li Y C 2005 M. S. Dissertation (Beijing:Beijing University of Chemical Technology) (in Chinese)[李艳臣2005硕士学位论文(北京:北京化工大学)]

    [27]

    Preetha P, Thomas M J 2011 IEEE Trans. Dielectr. Electr. Insul. 18 264

    [28]

    Tanaka T, Kozako M, Fuse N, Ohki Y 2005 IEEE Trans. Dielectr. Electr. Insul. 12 669

    [29]

    Zhang P H 2006 Ph. D. Dissertation (Harbin:Harbin University of Science and Technology) (in Chinese)[张沛红2006博士学位论文(哈尔滨:哈尔滨理工大学)]

  • [1] Liu Xiu-Cheng, Yang Zhi, Guo Hao, Chen Ying, Luo Xiang-Long, Chen Jian-Yong. Molecular dynamics simulation of thermal conductivity of diamond/epoxy resin composites. Acta Physica Sinica, 2023, 72(16): 168102. doi: 10.7498/aps.72.20222270
    [2] Liu Yue-Li, Zhao Si-Jie, Chen Wen, Zhou Jing. Numerical simulation of thermal and dielectric properties for SiO2/polytetrafluoroethylene dielectric composite. Acta Physica Sinica, 2022, 71(21): 210201. doi: 10.7498/aps.71.20220839
    [3] Wang Yi-Fei, Li Xiao-Wei. First-principle calculation on electronic structures and optical properties of hybrid graphene and BiOI nanosheets. Acta Physica Sinica, 2018, 67(11): 116301. doi: 10.7498/aps.67.20172220
    [4] Wang Ya-Jing, Li Gui-Xia, Wang Zhi-Hua, Gong Li-Ji, Wang Xiu-Fang. Diameter monodispersity of imogolite-like nanotube: a density functional theory study. Acta Physica Sinica, 2016, 65(4): 048101. doi: 10.7498/aps.65.048101
    [5] Guo Ge-Pu, Zhang Chun-Bing, Tu Juan, Zhang Dong. Quantitative characterization of viscoelasticity of microbubbles in ultrasound contrast agent. Acta Physica Sinica, 2015, 64(11): 114301. doi: 10.7498/aps.64.114301
    [6] Li Yi-Heng, Wang Jing, Hu Wei, Guo Qi. Theoretical investigation of spatial optical solitons in nematic liquid crystals with negative dielectric anisotropy. Acta Physica Sinica, 2014, 63(18): 184207. doi: 10.7498/aps.63.184207
    [7] Zhou Peng-Li, Zheng Shu-Kai, Tian Yan, Zhang Shuo-Ming, Shi Ru-Qian, He Jing-Fang, Yan Xiao-Bing. First principles calculation of dielectric properties of Al and N codoped 3C-SiC. Acta Physica Sinica, 2014, 63(5): 053102. doi: 10.7498/aps.63.053102
    [8] Gan Yong-Chao, Cao Wan-Qiang. Random field effect of polarization and dielectric permittivity in ferroelectric transitions. Acta Physica Sinica, 2013, 62(12): 127701. doi: 10.7498/aps.62.127701
    [9] Li Zhi-Min, Shi Jian-Zhang, Wei Xiao-Hei, Li Pei-Xian, Huang Yun-Xia, Li Gui-Fang, Hao Yue. First principles calculation of electronic structure for Al-doped 3C-SiC and its microwave dielectric properties. Acta Physica Sinica, 2012, 61(23): 237103. doi: 10.7498/aps.61.237103
    [10] Ri Chung-Ho, Li Lin, Qi Yang. Electronic structures and dielectric properties of BaCoxZn2-xFe16O27 from first principles. Acta Physica Sinica, 2012, 61(20): 207102. doi: 10.7498/aps.61.207102
    [11] Li Xue-Mei, Han Hui-Lei, He Guang-Pu. Lattice dynamical, dielectric and thermodynamic properties of LiNH2 from first principles. Acta Physica Sinica, 2011, 60(8): 087104. doi: 10.7498/aps.60.087104
    [12] Huang Yun-Xia, Cao Quan-Xi, Li Zhi-Min, Li Gui-Fang, Wang Yu-Peng, Wei Yun-Ge. First-principles calculation of microwave dielectric properties of Al-doping ZnO powders. Acta Physica Sinica, 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
    [13] Wang Qiao-Zhan, Yu Run-Sheng, Qin Xiu-Bo, Li Yu-Xiao, Wang Bao-Yi, Jia Quan-Jie. Pore structure determination of mesoporous SiO2 thin films by slow positron annihilation spectroscopy. Acta Physica Sinica, 2009, 58(12): 8478-8483. doi: 10.7498/aps.58.8478
    [14] Xu Can, Cao Juan, Gao Chen-Yang. Calculation of structure and properties of one-dimensional silica nanomaterials based on first-principle. Acta Physica Sinica, 2006, 55(8): 4221-4225. doi: 10.7498/aps.55.4221
    [15] Wang Yuan, Bai Xuan-Yu, Xu Ke-Wei. Morphological characterization and nanoindentation hardness scatter evaluation for Cu-W thin films based on wavelet transform. Acta Physica Sinica, 2004, 53(7): 2281-2286. doi: 10.7498/aps.53.2281
    [16] Li Zheng-Fa, Zhong Wei-Lie, Qiu Zhong-Ping, Ge Hong-Liang, Zhang Pei-Lin, Wang Chun-Lei. Dielectric and ferroelectric properties of BaBi4Ti4O15 ceramics and their dependence on lattice structure. Acta Physica Sinica, 2004, 53(9): 3200-3204. doi: 10.7498/aps.53.3200
    [17] ZHANG YI-XIN, XU QIANG. THE COUPLING OF OPTICAL AND SIZE POLYDISPERSITIES BY DYNAMIC LIGHT SCATTERING. Acta Physica Sinica, 1999, 48(4): 735-743. doi: 10.7498/aps.48.735
    [18] TANG CHAO-QUN, YU LI-HUA. THE DIELECTRIC PROPERTY AND DEFECTS OF La-DOPED BaTiO3 CERAMICS. Acta Physica Sinica, 1996, 45(7): 1220-1224. doi: 10.7498/aps.45.1220
    [19] ZHONG WEI-LIE, ZHANG PEI-LIN, ZHAO HUAN-SUI, CHEN HUAN-CHU, CHEN FU-SHENG, SONG YONG-YUAN. DIELECTRIC, FERROELECTRIC AND PYROELECTRIC PROPERTIES OF LITHIUM SODIUM NIOBATE AT LOW TEMPERATURES. Acta Physica Sinica, 1988, 37(11): 1837-1842. doi: 10.7498/aps.37.1837
    [20] CHEN LI-QUAN, ZHAO ZONG-YUAN, WANG CHAO-YING, LI ZI-RONG. EFFECT OF DISPERSED α-Al2O3 SECOND PHASE PARTICLES ON THE IONIC CONDUCTION OF β-Li2SO4. Acta Physica Sinica, 1985, 34(8): 1027-1033. doi: 10.7498/aps.34.1027
Metrics
  • Abstract views:  5249
  • PDF Downloads:  335
  • Cited By: 0
Publishing process
  • Received Date:  29 June 2016
  • Accepted Date:  11 September 2016
  • Published Online:  05 December 2016

/

返回文章
返回